48 research outputs found
Bonn eXperimental System (BoXS): An open-source platform for interactive experiments in psychology and economics
The increased interest in complex-interactive behavior on the one hand and the cognitive and affective processes underlying behavior on the other are a challenge for researchers in psychology and behavioral economics. Research often necessitates that participants strategically interact with each other in dyads or groups. At the same time, to investigate the underlying cognitive and affective processes in a fine-grained manner, not only choices but also other variables such as decision time, information search, and pupil dilation should be recorded. The Bonn eXperimental System (BoXS) introduced in this article is an open-source platform that allows interactive as well as non-interactive experiments to be conducted while recording process measures very efficiently and completely browser-based. In the current version, BoXS has particularly been extended to enable conducting interactive eye-tracking and mouse-tracking experiments. One core advantage of BoXS is its simplicity. Using BoXS does not require prior installation for both experimenters and participants, which allows for running studies outside the laboratory and over the internet. Learning to program for BoXS is easy even for researchers without previous programming experience
14177 Interest of the Global Evaluation Acne (GEA) scale on facial photographs for different ethnicities
Maritime Transport in a Life Cycle Perspective: How Fuels, Vessel Types, and Operational Profiles Influence Energy Demand and Greenhouse Gas Emissions
A “Well-to-Propeller” Life Cycle Assessment of maritime transport was performed with a European geographical focus. Four typical types of vessels with specific operational profiles were assessed: a container vessel and a tanker (both with 2-stroke engines), a passenger roll-on/roll-off (Ro-Pax) and a cruise vessel (both with 4-stroke engines). All main engines were dual fuel operated with Heavy Fuel Oil (HFO) or Liquefied Natural Gas (LNG). Alternative onshore and offshore fuel supply chains were considered. Primary energy use and greenhouse gas emissions were assessed. Raw material extraction was found to be the most impactful life cycle stage (~90% of total energy use). Regarding greenhouse gases, liquefaction was the key issue. When transitioning from HFO to LNG, the systems were mainly influenced by a reduction in cargo capacity due to bunkering requirements and methane slip, which depends on the fuel supply chain (onshore has 64% more slip than offshore) and the engine type (4-stroke engines have 20% more slip than 2-stroke engines). The combination of alternative fuel supply chains and specific operational profiles allowed for a complete system assessment. The results demonstrated that multiple opposing drivers affect the environmental performance of maritime transport, a useful insight towards establishing emission abatement strategies.</jats:p
