12 research outputs found
Confirmation of ovarian homogeneity in post-vitellogenic cultured white sturgeon, Acipenser transmontanus
Rapid noninvasive characterization of ovarian follicular atresia in cultured white sturgeon (Acipenser transmontanus) by near infrared spectroscopy
Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes <i>c</i>′: Effect of the Proximal Heme-NO Environment
Five-coordinate heme nitrosyl complexes (5cNO) underpin biological heme-NO signal transduction. Bacterial cytochromes c′ are some of the few structurally characterized 5cNO proteins, exhibiting a distal to proximal 5cNO transition of relevance to NO sensing. Establishing how 5cNO coordination (distal vs proximal) depends on the heme environment is important for understanding this process. Recent 5cNO crystal structures of Alcaligenes xylosoxidans cytochrome c′ (AXCP) and Shewanella frigidimarina cytochrome c′ (SFCP) show a basic residue (Arg124 and Lys126, respectively) near the proximal NO binding sites. Using resonance Raman (RR) spectroscopy, we show that structurally characterized 5cNO complexes of AXCP variants and SFCP exhibit a range of (NO) (1651-1671 cm-1) and (FeNO) (519-536 cm-1) vibrational frequencies, depending on the nature of the proximal heme pocket and the sample temperature. While the AXCP Arg124 residue appears to have little impact on 5cNO vibrations, the (NO) and (FeNO) frequencies of the R124K variant are consistent with (electrostatically) enhanced Fe(II) (NO)∗ backbonding. Notably, RR frequencies for SFCP and R124A AXCP are significantly displaced from the backbonding trendline, which in light of recent crystallographic data and density functional theory modeling may reflect changes in the Fe-N-O angle and/or extent of donation from the NO to the Fe(II) (dz2) orbital. For R124A AXCP, correlation of vibrational and crystallographic data is complicated by distal and proximal 5cNO populations. Overall, this study highlights the complex structure-vibrational relationships of 5cNO proteins that allow RR spectra to distinguish 5cNO coordination in certain electrostatic and steric environments
Distal-to-Proximal NO Conversion in Hemoproteins: The Role of the Proximal Pocket
Hemoproteins play central roles in the formation and utilization of nitric oxide (NO) in cellular signaling, as well as in protection against nitrosative stress. Key to heme-nitrosyl function and reactivity is the Fe coordination number (5 or 6). For (five-coordinate) 5c-NO complexes, the potential for NO to bind on either heme face exists, as in the microbial cytochrome c′ from Alcaligenes xylosoxidans (AxCYTcp), which forms a stable proximal 5c-NO complex via a distal six-coordinate NO intermediate and a putative dinitrosyl species. Strong parallels between the NO-binding kinetics of AxCYTcp, the eukaryotic NO sensor soluble guanylate cyclase, and the ferrocytochrome c/cardiolipin complex have led to the suggestion that a distal-to-proximal NO switch could contribute to the selective ligand responses in gas-sensing hemoproteins. The proximal NO-binding site in AxCYTcp is close to a conserved basic (Arg124) residue that is postulated to modulate NO reactivity. We have replaced Arg124 by five different amino acids and have determined high-resolution (1.07-1.40 Å) crystallographic structures with and without NO. These, together with kinetic and resonance Raman data, provide new insights into the mechanism of distal-to-proximal heme-NO conversion, including the determinants of Fe-His bond scission. The Arg124Ala variant allowed us to determine the structure of an analog of the previously unobserved key 5c-NO distal intermediate species. The very high resolution structures combined with the extensive spectroscopic and kinetic data have allowed us to provide a fresh insight into heme reactivity towards NO, a reaction that is of wide importance in biology. © 2010 Elsevier Ltd. All rights reserved
