921 research outputs found
Global analysis of serine/threonine and tyrosine protein phosphatase catalytic subunit genes in Neurospora crassa reveals interplay between phosphatases and the p38 mitogen-activated protein kinase.
Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock
Resonant interaction between gravitational waves, electromagnetic waves and plasma flows
In magnetized plasmas gravitational and electromagnetic waves may interact
coherently and exchange energy between themselves and with plasma flows. We
derive the wave interaction equations for these processes in the case of waves
propagating perpendicular or parallel to the plasma background magnetic field.
In the latter case, the electromagnetic waves are taken to be circularly
polarized waves of arbitrary amplitude. We allow for a background drift flow of
the plasma components which increases the number of possible evolution
scenarios. The interaction equations are solved analytically and the
characteristic time scales for conversion between gravitational and
electromagnetic waves are found. In particular, it is shown that in the
presence of a drift flow there are explosive instabilities resulting in the
generation of gravitational and electromagnetic waves. Conversely, we show that
energetic waves can interact to accelerate particles and thereby \emph{produce}
a drift flow. The relevance of these results for astrophysical and cosmological
plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde
The guanine nucleotide exchange factor RIC8 regulates conidial germination through Gα proteins in Neurospora crassa.
Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at least in part, from an important role in control of asexual spore (conidia) germination. Loss of GNA-3 leads to a drastic reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in germination similar to that in the Δgna-1, Δgna-3 double mutant, suggesting that RIC8 regulates conidial germination through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that expression of a GTPase-deficient, constitutively active gna-3 allele in the Δric8 mutant leads to a significant increase in conidial germination. Localization of the three Gα proteins during conidial germination was probed through analysis of cells expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Gα subunits were constructed through insertion of TagRFP in a conserved loop region of the Gα subunits. The results demonstrated that GNA-1 localizes to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during hyphal outgrowth
Recommended from our members
Global Analysis of Predicted G Protein-Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa.
G protein-coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not been functionally studied in any filamentous fungal species. Here, we analyze phenotypes in available mutants for 36 GPCR genes, including 20 Pth11-related, in the model filamentous fungus Neurospora crassa. We also investigate patterns of gene expression for all 43 predicted GPCR genes in available datasets. A total of 17 mutants (47%) possessed at least one growth or developmental phenotype. We identified 18 mutants (56%) with chemical sensitivity or nutritional phenotypes (11 uniquely), bringing the total number of mutants with at least one defect to 28 (78%), including 15 mutants (75%) in the Pth11-related class. Gene expression trends for GPCR genes correlated with the phenotypes observed for many mutants and also suggested overlapping functions for several groups of co-transcribed genes. Several members of the Pth11-related class have phenotypes and/or are differentially expressed on cellulose, suggesting a possible role for this gene family in plant cell wall sensing or utilization
Vulnerability Factors and Pathways Leading to Underage Entry into Sex Work in two Mexican-US Border Cities
The current wave of interest in human trafficking and the commercial sexual exploitation of children has exposed a lack of knowledge about the vulnerabilities leading to underage entry into sex work. This knowledge is necessary for the development of effective prevention programs to identify girls who are most at-risk, especially in Latin America, a region that is believed to be a large source of persons moved across international borders for the purposes of sexual and labor exploitation. The objective of this study was to explore and increase understanding of the vulnerability factors and pathways leading to underage entry into sex work experienced by women currently engaging in sex work in two cities on the northern border of Mexico. From August 2013 to October 2014, 20 female sex workers (FSWs) with a history of entry into sex work prior to age 18 were recruited for in-depth interviews from a larger time-location sample of female sex workers (FSWs) participating in a quantitative survey in Tijuana and Ciudad Juarez. The median age of entry into sex work was 14 (range 10-17); 12/21 participants reported being forced into sex work and, of these, 7 were transported to another city where they began engaging in sex work. Family dysfunction (e.g., domestic violence between parents, parent drug use, neglect, etc.), sexual and physical abuse, and teen pregnancy were among the key themes that emerged as vulnerabilities to underage entry into sex work. Women’s narratives clearly illustrated that the vulnerabilities and pathways leading to underage entry are manifold, complex, and often intersect with each other. Our findings begin to lay the groundwork for understanding the potential vulnerabilities and pathways leading to underage entry into sex, and may have relevance to Latin America in general. This study also provides a foundation for further research to explore what may mitigate these vulnerabilities as well as creating evidence-based interventions to prevent commercial sexual exploitation of minors in the region
Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space
We investigate transverse electromagnetic waves propagating in a plasma in
the de Sitter space. Using the 3+1 formalism we derive the relativistic
two-fluid equations to take account of the effects due to the horizon and
describe the set of simultaneous linear equations for the perturbations. We use
a local approximation to investigate the one-dimensional radial propagation of
Alfv\'en and high frequency electromagnetic waves and solve the dispersion
relation for these waves numerically.Comment: 19 pages, 12 figure
Very high frequency gravitational wave background in the universe
Astrophysical sources of high frequency gravitational radiation are
considered in association with a new interest to very sensitive HFGW receivers
required for the laboratory GW Hertz experiment. A special attention is paid to
the phenomenon of primordial black holes evaporation. They act like black body
to all kinds of radiation, including gravitons, and, therefore, emit an
equilibrium spectrum of gravitons during its evaporation. Limit on the density
of high frequency gravitons in the Universe is obtained, and possibilities of
their detection are briefly discussed.Comment: 14 page
Using non-smooth multi-domain dynamics to improve the safety on haul roads in surface mining
The paper presents a preliminary numerical study aimed to improve the safety on haul roads in surface mining. The interaction and collision between granular berms and ultra-class haul trucks are investigated by using non-smooth multi-domain dynamics. The haul truck is modelled as a rigid multibody system and the granular berm as a distribution of rigid particles using the discrete element method. A non-smooth dynamics approach is applied to enable stable and time-efficient simulation of the full system with strong coupling. The numerical model is first calibrated using full-scale data from experimental tests and then applied to investigate the collision between the haul truck and granular berms of different geometry under various approach conditions
Collagen organization within the cartilage of TRPV4(-/-) mice studied with two-photon microscopy and polarized second harmonic generation
The polymodal channel TRPV4 has been shown to regulate development and maintenance of cartilage. Here we investigate whether TRPV4 activity regulates the early deposition and structure of collagen matrix in the femoral head cartilage by comparing the 3D morphology and the sub-micrometer organization of the collagen matrix between wild type and TRPV4(-/-) mice pups four to five days old. Two-photon microscopy can be used to conduct label-free imaging of cartilage, as collagen generates a second harmonic signal (second harmonic generation [SHG]) under pulsed infrared excitation. In one set of measurements, we use circularly polarized laser light to reconstruct the 3D morphology of the femoral head cartilage and to measure the tissue thickness. Second, by rotating the direction of the linearly polarized light and using polarized SHG detection, we investigate the sub-micrometer orientation of collagen fibers in the cartilage. At this developmental stage, we cannot detect statistically significant differences between the two mice strains, although a tendency toward a more random orientation of collagen fibers and a higher thickness of the whole cartilage seems to characterize the TRPV4(-/-) mice. We discuss possible reasons for these observations
Global Analysis of Serine-Threonine Protein Kinase Genes in Neurospora Crassa
Serine/threonine (S/T) protein kinases are crucial components of diverse signaling pathways in eukaryotes, including the model filamentous fungus Neurospora crassa. In order to assess the importance of S/T kinases to Neurospora biology, we embarked on a global analysis of 86 S/T kinase genes in Neurospora. We were able to isolate viable mutants for 77 of the 86 kinase genes. Of these, 57% exhibited at least one growth or developmental phenotype, with a relatively large fraction (40%) possessing a defect in more than one trait. S/T kinase knockouts were subjected to chemical screening using a panel of eight chemical treatments, with 25 mutants exhibiting sensitivity or resistance to at least one chemical. This brought the total percentage of S/T mutants with phenotypes in our study to 71%. Mutants lacking apg-1, an S/T kinase required for autophagy in other organisms, possessed the greatest number of phenotypes, with defects in asexual and sexual growth and development and in altered sensitivity to five chemical treatments. We showed that NCU02245/stk-19 is required for chemotropic interactions between female and male cells during mating. Finally, we demonstrated allelism between the S/T kinase gene NCU00406 and velvet (vel), encoding a p21-activated protein kinase (PAK) gene important for asexual and sexual growth and development in Neurospora
- …
