826 research outputs found
Putative cell adhesion membrane protein Vstm5 regulates neuronal morphology and migration in the central nervous system
During brain development, dynamic changes in neuronal membranes perform critical roles in neuronal morphogenesis and migration to create functional neural circuits. Among the proteins that induce membrane dynamics, cell adhesion molecules are important in neuronal membrane plasticity. Here, we report that V-set and transmembrane domain-containing protein 5 (Vstm5), a cell-adhesion-like molecule belonging to the Ig superfamily, was found in mouse brain. Knock-down of Vstm5 in cultured hippocampal neurons markedly reduced the complexity of dendritic structures, as well as the number of dendritic filopodia. Vstm5 also regulates neuronal morphology by promoting dendritic protrusions that later develop into dendritic spines. Using electroporationin utero, we found that Vstm5 overexpression delayed neuronal migration and induced multiple branches in leading processes during corticogenesis. These results indicate that Vstm5 is a new cell-adhesion-like molecule and is critically involved in synaptogenesis and corticogenesis by promoting neuronal membrane dynamics.SIGNIFICANCE STATEMENTNeuronal migration and morphogenesis play critical roles in brain development and function. In this study, we demonstrate for the first time that V-set and transmembrane domain-containing protein 5 (Vstm5), a putative cell adhesion membrane protein, modulates both the position and complexity of central neurons by altering their membrane morphology and dynamics. Vstm5 is also one of the target genes responsible for variations in patient responses to treatments for major depressive disorder. Our results provide the first evidence that Vstm5 is a novel factor involved in the modulation of the neuronal membrane and a critical element in normal neural circuit formation during mammalian brain development.</jats:p
Topological defects, pattern evolution, and hysteresis in thin magnetic films
Nature of the magnetic hysteresis for thin films is studied by the
Monte-Carlo simulations. It is shown that a reconstruction of the magnetization
pattern with external field occurs via the creation of vortex-antivortex pairs
of a special kind at the boundaries of stripe domains. It is demonstrated that
the symmetry of order parameter is of primary importance for this problem, in
particular, the in-plane magnetic anisotropy is necessary for the hysteresis.Comment: Accepted to EPL; 7 pages, 3 color figure
Complex Patterns in Reaction-Diffusion Systems: A Tale of Two Front Instabilities
Two front instabilities in a reaction-diffusion system are shown to lead to
the formation of complex patterns. The first is an instability to transverse
modulations that drives the formation of labyrinthine patterns. The second is a
Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar
front unstable and gives rise to a pair of counterpropagating fronts. Near the
NIB bifurcation the relation of the front velocity to curvature is highly
nonlinear and transitions between counterpropagating fronts become feasible.
Nonuniformly curved fronts may undergo local front transitions that nucleate
spiral-vortex pairs. These nucleation events provide the ingredient needed to
initiate spot splitting and spiral turbulence. Similar spatio-temporal
processes have been observed recently in the ferrocyanide-iodate-sulfite
reaction.Comment: Text: 14 pages compressed Postscript (90kb) Figures: 9 pages
compressed Postscript (368kb
Non-equilibrium raft-like membrane domains under continuous recycling
We present a model for the kinetics of spontaneous membrane domain (raft)
assembly that includes the effect of membrane recycling ubiquitous in living
cells. We show that the domains have a broad power-law distribution with an
average radius that scales with the 1/4 power of the domain lifetime when the
line tension at the domain edges is large. For biologically reasonable
recycling and diffusion rates the average domain radius is in the tens of nm
range, consistent with observations. This represents one possible link between
signaling (involving rafts) and traffic (recycling) in cells. Finally, we
present evidence that suggests that the average raft size may be the same for
all scale-free recycling schemes.Comment: 8 pages, 5 figure
Surface states in nearly modulated systems
A Landau model is used to study the phase behavior of the surface layer for
magnetic and cholesteric liquid crystal systems that are at or near a Lifshitz
point marking the boundary between modulated and homogeneous bulk phases. The
model incorporates surface and bulk fields and includes a term in the free
energy proportional to the square of the second derivative of the order
parameter in addition to the usual term involving the square of the first
derivative. In the limit of vanishing bulk field, three distinct types of
surface ordering are possible: a wetting layer, a non-wet layer having a small
deviation from bulk order, and a different non-wet layer with a large deviation
from bulk order which decays non-monotonically as distance from the wall
increases. In particular the large deviation non-wet layer is a feature of
systems at the Lifshitz point and also those having only homogeneous bulk
phases.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Dynamical Ordering of Driven Stripe Phases in Quenched Disorder
We examine the dynamics and stripe formation in a system with competing short
and long range interactions in the presence of both an applied dc drive and
quenched disorder. Without disorder, the system forms stripes organized in a
labyrinth state. We find that, when the disorder strength exceeds a critical
value, an applied dc drive can induce a dynamical stripe ordering transition to
a state that is more ordered than the originating undriven, unpinned pattern.
We show that signatures in the structure factor and transport properties
correspond to this dynamical reordering transition, and we present the dynamic
phase diagram as a function of strengths of disorder and dc drive.Comment: 4 pages, 4 postscript figure
Automatic wheeze detection based on auditory modelling
Automatic wheeze detection has several potential benefits compared with reliance on human auscultation: it is experience independent, an automated historical record can easily be kept, and it allows quantification of wheeze severity. Previous attempts to detect wheezes automatically have had partial success but have not been reliable enough to become widely accepted as a useful tool. In this paper an improved algorithm for automatic wheeze detection based on auditory modelling is developed, called the frequency- and duration-dependent threshold algorithm. The mean frequency and duration of each wheeze component are obtained automatically. The detected wheezes are marked on a spectrogram. In the new algorithm, the concept of a frequency- and duration-dependent threshold for wheeze detection is introduced. Another departure from previous work is that the threshold is based not on global power but on power corresponding to a particular frequency range. The algorithm has been tested on 36 subjects, 11 of whom exhibited characteristics of wheeze. The results show a marked improvement in the accuracy of wheeze detection when compared with previous algorithms
Magnetic Domain Patterns Depending on the Sweeping Rate of Magnetic Fields
The domain patterns in a thin ferromagnetic film are investigated in both
experiments and numerical simulations. Magnetic domain patterns under a zero
field are usually observed after an external magnetic field is removed. It is
demonstrated that the characteristics of the domain patterns depend on the
decreasing rate of the external field, although it can also depend on other
factors. Our numerical simulations and experiments show the following
properties of domain patterns: a sea-island structure appears when the field
decreases rapidly from the saturating field to the zero field, while a
labyrinth structure is observed for a slowly decreasing field. The mechanism of
the dependence on the field sweeping rate is discussed in terms of the concepts
of crystallization.Comment: 4 pages, 3 figure
Stripe phases in high-temperature superconductors
Stripe phases are predicted and observed to occur in a class of
strongly-correlated materials describable as doped antiferromagnets, of which
the copper-oxide superconductors are the most prominent representative. The
existence of stripe correlations necessitates the development of new principles
for describing charge transport, and especially superconductivity, in these
materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl.
Acad. Sci. US
Interface dynamics for layered structures
We investigate dynamics of large scale and slow deformations of layered
structures. Starting from the respective model equations for a non-conserved
system, a conserved system and a binary fluid, we derive the interface
equations which are a coupled set of equations for deformations of the
boundaries of each domain. A further reduction of the degrees of freedom is
possible for a non-conserved system such that internal motion of each domain is
adiabatically eliminated. The resulting equation of motion contains only the
displacement of the center of gravity of domains, which is equivalent to the
phase variable of a periodic structure. Thus our formulation automatically
includes the phase dynamics of layered structures. In a conserved system and a
binary fluid, however, the internal motion of domains turns out to be a slow
variable in the long wavelength limit because of concentration conservation.
Therefore a reduced description only involving the phase variable is not
generally justified.Comment: 16 pages; Latex; revtex aps; one figure. Revision: screened coulomb
interaction with coulomb limi
- …
