2,011 research outputs found

    An improved Monte Carlo method for direct calculation of the density of states

    Full text link
    We present an efficient Monte Carlo algorithm for determining the density of states which is based on the statistics of transition probabilities between states. By measuring the infinite temperature transition probabilities--that is, the probabilities associated with move proposal only--we are able to extract excellent estimates of the density of states. When this estimator is used in conjunction with a Wang-Landau sampling scheme [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)], we quickly achieve uniform sampling of macrostates (e.g., energies) and systematically refine the calculated density of states. This approach requires only potential energy evaluations, continues to improve the statistical quality of its results as the simulation time is extended, and is applicable to both lattice and continuum systems. We test the algorithm on the Lennard-Jones liquid and demonstrate good statistical convergence properties.Comment: 7 pages, 4 figures. to appear in Journal of Chemical Physic

    Development of Multiple Polymorphic Microsatellite Markers for Ceratina calcarata (Hymenoptera: Apidae) Using Genome-Wide Analysis

    Get PDF
    The small carpenter bee, Ceratina calcarata (Robertson), is a widespread native pollinator across eastern North America. The behavioral ecology and nesting biology of C. calcarata has been relatively well-studied and the species is emerging as a model organism for both native pollinator and social evolution research. C. calcarata is subsocial: reproductively mature females provide extended maternal care to their brood. As such, studies of C. calcarata may also reveal patterns of relatedness and demography unique to primitively social Hymenoptera. Here, we present 21 microsatellite loci, isolated from the recently completed C. calcarata genome. Screening in 39 individuals across their distribution revealed that no loci were in linkage disequilibrium, nor did any deviate significantly from Hardy-Weinberg following sequential Bonferroni correction. Allele count ranged from 2 to 14, and observed and expected heterozygosities ranged from 0.08 to 0.82 (mean 0.47) and 0.26 to 0.88 (mean 0.56), respectively. These markers will enable studies of population-wide genetic structuring across C. calcarata’s distribution. Such tools will also allow for exploration of between and within-colony relatedness in this subsocial native pollinator
    corecore