12,683 research outputs found

    Evolution of size-dependent flowering in Onopordum illyricum: A quantitative assessment of the role of stochastic selection pressures

    Get PDF
    We explore the evolution of delayed, size-dependent reproduction in the monocarpic perennial Onopordum illyricum, using a range of mathematical models, parameterized with long-term field data. Analysis of the long-term data indicated that mortality, flowering, and growth were age and size dependent. Using mixed models, we estimated the variance about each of these relationships and also individual-specific effects. For the held populations, recruitment was the main density-dependent process, although there were weak effects of local density on growth and mortality Using parameterized growth models, which assume plants grow along a deterministic trajectory, we predict plants should flower at sizes approximately 50% smaller than observed in the field. We then develop a simple criterion, termed the "1-yr look-ahead criterion," based on equating seed production now with that of next year, allowing for mortality and growth, to determine at what size a plant should flower. This model allows the incorporation of variance about the growth function and individual-specific effects. The model predicts flowering at sizes approximately double that observed, indicating that variance about the growth curve selects for larger sizes at flowering. The 1-yr look-ahead approach is approximate because it ignores growth opportunities more than 1 yr ahead. To assess the accuracy of this approach, we develop a more complicated dynamic state variable model. Both models give similar results indicating the utility of the 1-yr look-ahead criterion. To allow for temporal variation in the model parameters, we used an individual-based model with a generic algorithm. This gave very accurate prediction of the observed flowering strategies. Sensitivity analysis of the model suggested that temporal variation in the parameters of the growth equation made waiting to flower more risky, so selected for smaller sizes at flowering. The models clearly indicate the need to incorporate stochastic variation in life-history analyses

    Study to determine dielectric properties of sandstone, shale, coal, and slate

    Get PDF
    Triplicate dielectric constant and loss tangent measurements on samples of sandstone, shale, coal, and slate were performed. Each of the three necessary configurations of the coal material was sampled to obtain measurements, with each sample machined parallel to the coal layering orientation. The coal samples were machined perpendicular to the coal layering and measured. They were conditioned at 100% humidity and at room temperature and remeasured; then conditioned in an elevated environment, and remeasured for dielectric properties. The coal data appear to remain relatively constant over the microwave frequency region. At the Ghz frequencies, the relative dielectric constant of coal is slightly higher for the E-field parallel to the layers than for the perpendicular case

    Tracking Neptune's Migration History through High-Perihelion Resonant Trans-Neptunian Objects

    Full text link
    Recently, Sheppard et al. (2016) presented the discovery of seven new trans-Neptunian objects with moderate eccentricities, perihelia beyond 40 AU, and semimajor axes beyond 50 AU. Like the few previously known objects on similar orbits, these objects' semimajor axes are just beyond the Kuiper belt edge and clustered around Neptunian mean motion resonances (MMRs). These objects likely obtained their observed orbits while trapped within MMRs, when the Kozai-Lidov mechanism raised their perihelia and weakened Neptune's dynamical influence. Using numerical simulations that model the production of this population, we find that high-perihelion objects near Neptunian MMRs can constrain the nature and timescale of Neptune's past orbital migration. In particular, the population near the 3:1 MMR (near 62 AU) is especially useful due to its large population and short dynamical evolution timescale. If Neptune finishes migrating within ~100 Myrs or less, we predict over 90% of high-perihelion objects near the 3:1 MMR will have semimajor axes within 1 AU of each other, very near the modern resonance's center. On the other hand, if Neptune's migration takes ~300 Myrs, we expect ~50% of this population to reside in dynamically fossilized orbits over ~1 AU closer to the Sun than the modern resonance. We highlight 2015 KH162 as a likely member of this fossilized 3:1 population. Under any plausible migration scenario, nearly all high-perihelion objects in resonances beyond the 4:1 MMR (near 76 AU) reach their orbits well after Neptune stops migrating and comprise a recently generated, dynamically active population.Comment: Accepted to ApJ; 15 pages, 13 figures, 1 tabl

    A submillimeter interference spectrometer - Characteristics, performance and measurements

    Get PDF
    Performance characteristics of interference spectrometer using submillimeter wave

    The potential impact on Florida-based marina and boating industries of a post-embargo Cuba: an analysis of geographic, physical, policy and industry trends

    Get PDF
    The information in this Technical Paper addresses the future of the US-Cuban marina and recreational boating industries from the geographic, physical, policy making and economic perspectives for a post-embargo Cuba. Each individual paper builds on the presentations made at the workshop, the information obtained in the subsequent trip to Cuba and presents in detailed form information which we hope is useful to all readers. (147pp.

    Vortex -- Kink Interaction and Capillary Waves in a Vector Superfluid

    Full text link
    Interaction of a vortex in a circularly polarized superfluid component of a 2d complex vector field with the phase boundary between superfluid phases with opposite signs of polarization leads to a resonant excitation of a ``capillary'' wave on the boundary. This leads to energy losses by the vortex--image pair that has to cause its eventual annihilation.Comment: LaTeX 7 pages, no figure

    Physiological Profile of Male Competitive and Recreational Surfers

    Get PDF
    Surfing consists of both high- and low-intensity paddling of varying durations, using both the aerobic and anaerobic systems. Surf-specific physiological studies lack adequate group sample sizes, and V[Combining Dot Above]O2peak values are yet to determine the differences between competitive and recreational surfers. The purpose of this study was therefore to provide a comprehensive physiological profile of both recreational and competitive surfers. This multisite study involved 62 male surfers, recreational (n = 47) and competitive (n = 15). Anthropometric measurements were conducted followed by dual-energy x-ray absorptiometry, anaerobic testing and finally aerobic testing. V[Combining Dot Above]O2peak was significantly greater in competitive surfers than in recreational surfers (M = 40.71 ± 3.28 vs. 31.25 ± 6.31 ml·kg·min, p \u3c 0.001). This was also paralleled for anaerobic power (M = 303.93 vs. 264.58 W) for competitive surfers. Arm span and lean total muscle mass was significantly (p ≤ 0.01) correlated with key performance variables (V[Combining Dot Above]O2peak and anaerobic power). No significant (p ≥ 0.05) correlations were revealed between season rank and each of the variables of interest (V[Combining Dot Above]O2peak and anaerobic power). Key performance variables (V[Combining Dot Above]O2peak and anaerobic power) are significantly higher in competitive surfers, indicating that this is both an adaptation and requirement in this cohort. This battery of physiological tests could be used as a screening tool to identify an athlete\u27s weaknesses or strengths. Coaches and clinicians could then select appropriate training regimes to address weaknesses

    A comparison of on-track and wind tunnel surface pressure measurements on a compact SUV.

    Get PDF
    corecore