435 research outputs found

    Revisiting Agegraphic Dark Energy in Brans-Dicke Cosmology

    Full text link
    We explore a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) universe which is filled with agegraphic dark energy (ADE) with mutual interaction with pressureless dark matter in the background of Brans-Dicke (BD) theory. We consider both original and new type of agegraphic dark energy (NADE) and further assume the sign of the interaction term can change during the history of the Universe. We obtain the equation of state parameter, the deceleration parameter and the evolutionary equation for the sign-changeable interacting ADE and NADE in BD theory. We find that, in both models, the equation of state parameter, wDw_D, cannot cross the phantom line, although they can predict the Universe evolution from the early deceleration phase to the late time acceleration, compatible with observations. We also investigate the sound stability of these models and find out that both models cannot show a signal of stability for different model parameters.Comment: 10 pages, 14 figure

    Stability of HDE model with sign-changeable interaction in Brans-Dicke theory

    Full text link
    We consider the Brans-Dicke (BD) theory of gravity and explore the cosmological implications of the sign-changeable interacting holographic dark energy (HDE) model in the background of Friedmann-Robertson-Walker (FRW) universe. As the system's infrared (IR) cutoff, we choose the future event horizon, the Granda-Oliveros (GO) and the Ricci cutoffs. For each cutoff, we obtain the density parameter, the equation of state (EoS) and the deceleration parameter of the system. In case of future event horizon, we find out that the EoS parameter, wDw_{D}, can cross the phantom line, as a result the transition from deceleration to acceleration expansion of the universe can be achieved provided the model parameters are chosen suitably. Then, we investigate the instability of the sign-changeable interacting HDE model against perturbations in BD theory. For this purpose, we study the squared sound speed vs2v_s^2 whose sign determines the stability of the model. When vs2<0v_s^2<0 the model is unstable against perturbation. For future event horizon cutoff, our universe can be stable (vs2>0{v}^{2}_s>0) depending on the model parameters. Then, we focus on GO and Ricci cutoffs and find out that although other features of these two cutoffs seem to be consistent with observations, they cannot leads to stable dominated universe, except in special case with GO cutoff. Our studies confirm that for the sign-changeable HDE model in the setup of BD cosmology, the event horizon is the most suitable horizon which can passes all conditions and leads to a stable DE dominated universe.Comment: 19pages, 22figure

    Entropic Corrections to Einstein Equations

    Full text link
    Considering the general quantum corrections to the area law of black hole entropy and adopting the viewpoint that gravity interprets as an entropic force, we derive the modified forms of MOND theory of gravitation and Einstein field equations. As two special cases we study the logarithmic and power-law corrections to entropy and find the explicit form of the obtained modified equations.Comment: 10 pages, no figur

    Generalized ghost dark energy in Brans-Dicke theory

    Full text link
    It was argued that the vacuum energy of the Veneziano ghost field of QCD, in a time-dependent background, can be written in the general form, H+O(H2)H + O(H^2), where HH is the Hubble parameter. Based on this, a phenomenological dark energy model whose energy density is of the form ρ=αH+βH2\rho=\alpha H+\beta H^{2} was recently proposed to explain the dark energy dominated universe. In this paper, we investigate this generalized ghost dark energy model in the setup of Brans-Dicke cosmology. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model. It is shown that the equation of state parameter of the generalized ghost dark energy can cross the phantom line (wD=1w_D=-1) in some range of the parameters spaces.Comment: 8 Pages, 2figure

    Asymptotically (A)dS dilaton black holes with nonlinear electrodynamics

    Full text link
    It is well-known that with an appropriate combination of three Liouville-type dilaton potentials, one can construct charged dilaton black holes in an (anti)-de Sitter [(A)dS] spaces in the presence of linear Maxwell field. However, asymptotically (A)dS dilaton black holes coupled to nonlinear gauge field have not been found. In this paper, we construct, for the first time, three new classes of dilaton black hole solutions in the presence of three types of nonlinear electrodynamics, namely Born-Infeld, Logarithmic and Exponential nonlinear electrodynamics. All these solutions are asymptotically (A)dS and in the linear regime reduce to the Einstein-Maxwell-dilaton black holes in AdS spaces. We investigate physical properties and the causal structure, as well as asymptotic behavior of the obtained solutions, and show that depending on the values of the metric parameters, the singularity can be covered by various horizons. Interestingly enough, we find that the coupling of dilaton field and nonlinear gauge field in the background of (A)dS spaces leads to a strange behaviour for the electric field. We observe that the electric field is zero at singularity and increases smoothly until reaches a maximum value, then it decreases smoothly until goes to zero as rr\rightarrow\infty. The maximum value of the electric field increases with increasing the nonlinear parameter β\beta or decreasing the dilaton coupling α\alpha and is shifted to the singularity in the absence of either dilaton field (α=0\alpha=0) or nonlinear gauge field (β\beta\rightarrow\infty).Comment: 24 page
    corecore