535 research outputs found
Modeling and Optimization for Morphing Wing Concept Generation
This report consists of two major parts: 1) the approach to develop morphing wing weight equations, and 2) the approach to size morphing aircraft. Combined, these techniques allow the morphing aircraft to be sized with estimates of the morphing wing weight that are more credible than estimates currently available; aircraft sizing results prior to this study incorporated morphing wing weight estimates based on general heuristics for fixed-wing flaps (a comparable "morphing" component) but, in general, these results were unsubstantiated. This report will show that the method of morphing wing weight prediction does, in fact, drive the aircraft sizing code to different results and that accurate morphing wing weight estimates are essential to credible aircraft sizing results
Recommended from our members
Nested Dissection Method on Transputer
Nested dissection method is an elimination method for a set of linear algebraic equations with minimum fillins. Physically it divides a domain into four subdomains, and each subdomain is again divided into four. This procedure is repeated till all nodes are included in some subdomains. Using this characteristic, the authors examine the efficiency of the method on the transputer
Modeling and Optimization for Morphing Wing Concept Generation II
This report documents a series of investigations to develop an approach for structural sizing of various morphing wing concepts. For the purposes of this report, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and / or increasing aspect ratio by as much as 200% from the lowest possible value. These significant changes in geometry mean that the underlying load-bearing structure changes geometry. While most finite element analysis packages provide some sort of structural optimization capability, these codes are not amenable to making significant changes in the stiffness matrix to reflect the large morphing wing planform changes. The investigations presented here use a finite element code capable of aeroelastic analysis in three different optimization approaches -a "simultaneous analysis" approach, a "sequential" approach, and an "aggregate" approach
Morphing Wing Weight Predictors and Their Application in a Template-Based Morphing Aircraft Sizing Environment II
This report presents an approach for sizing of a morphing aircraft based upon a multi-level design optimization approach. For this effort, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and/or increasing aspect ratio by as much as 200% from the lowest possible value. The top-level optimization problem seeks to minimize the gross weight of the aircraft by determining a set of "baseline" variables - these are common aircraft sizing variables, along with a set of "morphing limit" variables - these describe the maximum shape change for a particular morphing strategy. The sub-level optimization problems represent each segment in the morphing aircraft's design mission; here, each sub-level optimizer minimizes fuel consumed during each mission segment by changing the wing planform within the bounds set by the baseline and morphing limit variables from the top-level problem
New periodic variable stars coincident with ROSAT sources discovered using SuperWASP
We present optical lightcurves of 428 periodic variable stars coincident with ROSAT X-ray sources, detected using the first run of the SuperWASP photometric survey. Only 68 of these were previously recognised as periodic variables. A further 30 of these objects are previously known pre-main sequence stars, for which we detect a modulation period for the first time. Amongst the newly identified periodic variables, many appear to be close eclipsing binaries, their X-ray emission is presumably the result of RS CVn type behaviour. Others are probably BY Dra stars, pre-main sequence stars and other rapid rotators displaying enhanced coronal activity. A number of previously catalogued pulsating variables (RR Lyr stars and Cepheids) coincident with X-ray sources are also seen, but we show hat these are likely to be misclassifications. We identify four objects which are probable low mass eclipsing binary stars, based on
their very red colour and light curve morphology
An Improved Method for Estimating the Masses of Stars with Transiting Planets
To determine the physical parameters of a transiting planet and its host star
from photometric and spectroscopic analysis, it is essential to independently
measure the stellar mass. This is often achieved by the use of evolutionary
tracks and isochrones, but the mass result is only as reliable as the models
used. The recent paper by Torres et al (2009) showed that accurate values for
stellar masses and radii could be obtained from a calibration using T_eff, log
g and [Fe/H]. We investigate whether a similarly good calibration can be
obtained by substituting log rho - the fundamental parameter measured for the
host star of a transiting planet - for log g, and apply this to star-exoplanet
systems. We perform a polynomial fit to stellar binary data provided in Torres
et al (2009) to obtain the stellar mass and radius as functions of T_eff, log
rho and [Fe/H], with uncertainties on the fit produced from a Monte Carlo
analysis. We apply the resulting equations to measurements for seventeen
SuperWASP host stars, and also demonstrate the application of the calibration
in a Markov Chain Monte Carlo analysis to obtain accurate system parameters
where spectroscopic estimates of effective stellar temperature and metallicity
are available. We show that the calibration using log rho produces accurate
values for the stellar masses and radii; we obtain masses and radii of the
SuperWASP stars in good agreement with isochrone analysis results. We ascertain
that the mass calibration is robust against uncertainties resulting from poor
photometry, although a good estimate of stellar radius requires good-quality
transit light curve to determine the duration of ingress and egress.Comment: 5 pages, 2 figures, accepted for publication in A&
Extracardiac 18F-florbetapir imaging in patients with systemic amyloidosis: more than hearts and minds
PURPOSE: 18F-Florbetapir has been reported to show cardiac uptake in patients with systemic light-chain amyloidosis (AL). This study systematically assessed uptake of 18F-florbetapir in patients with proven systemic amyloidosis at sites outside the heart. METHODS: Seventeen patients with proven cardiac amyloidosis underwent 18F-florbetapir PET/CT imaging, 15 with AL and 2 with transthyretin amyloidosis (ATTR). Three patients had repeat scans. All patients had protocolized assessment at the UK National Amyloidosis Centre including imaging with 123I-serum amyloid P component (SAP). 18F-Florbetapir images were assessed for areas of increased tracer accumulation and time-uptake curves in terms of standardized uptake values (SUVmean) were produced. RESULTS: All 17 patients showed 18F-florbetapir uptake at one or more extracardiac sites. Uptake was seen in the spleen in 6 patients (35%; 6 of 9, 67%, with splenic involvement on 123I-SAP scintigraphy), in the fat in 11 (65%), in the tongue in 8 (47%), in the parotids in 8 (47%), in the masticatory muscles in 7 (41%), in the lungs in 3 (18%), and in the kidney in 2 (12%) on the late half-body images. The 18F-florbetapir spleen retention index (SRI) was calculated. SRI >0.045 had 100% sensitivity/sensitivity (in relation to 123I-SAP splenic uptake, the current standard) in detecting splenic amyloid on dynamic imaging and a sensitivity of 66.7% and a specificity of 100% on the late half-body images. Intense lung uptake was seen in three patients, one of whom had lung interstitial infiltration suggestive of amyloid deposition on previous high-resolution CT. Repeat imaging showed a stable appearance in all three patients suggesting no early impact of treatment response. CONCLUSION: 18F-Florbetapir PET/CT is a promising tool for the detection of extracardiac sites of amyloid deposition. The combination of uptake in the heart and uptake in the spleen on 18F-florbetapir PET/CT, a hallmark of AL, suggests that this tracer holds promise as a screening tool for AL
SuperWASP: Wide Angle Search for Planets
SuperWASP is a fully robotic, ultra-wide angle survey for planetary transits.
Currently under construction, it will consist of 5 cameras, each monitoring a
9.5 x 9.5 deg field of view. The Torus mount and enclosure will be fully
automated and linked to a built-in weather station. We aim to begin
observations at the beginning of 2003.Comment: 4 pages, 1 figure, to be published in proceedings of "Scientific
Frontiers in Research on Extrasolar Planets
A transiting companion to the eclipsing binary KIC002856960
We present an early result from an automated search of Kepler eclipsing
binary systems for circumbinary companions. An intriguing tertiary signal has
been discovered in the short period eclipsing binary KIC002856960. This third
body leads to transit-like features in the light curve occurring every 204.2
days, while the two other components of the system display eclipses on a 6.2
hour period. The variations due to the tertiary body last for a duration of
\sim1.26 days, or 4.9 binary orbital periods. During each crossing of the
binary orbit with the tertiary body, multiple individual transits are observed
as the close binary stars repeatedly move in and out of alignment with the
tertiary object. We are at this stage unable to distinguish between a planetary
companion to a close eclipsing binary, or a hierarchical triply eclipsing
system of three stars. Both possibilities are explored, and the light curves
presented.Comment: Accepted into A&A Letters (5 pages & 3 figures
The EBLM project. II. A very hot, low-mass M dwarf in an eccentric and long period eclipsing binary system from SuperWASP
In this paper, we derive the fundamental properties of
1SWASPJ011351.29+314909.7 (J0113+31), a metal-poor (-0.40 +/- 0.04 dex),
eclipsing binary in an eccentric orbit (~0.3) with an orbital period of ~14.277
d. Eclipsing M dwarfs orbiting solar-type stars (EBLMs), like J0113+31, have
been identified from WASP light curves and follow-up spectroscopy in the course
of the transiting planet search. We present the first binary of the EBLM sample
to be fully analysed, and thus, define here the methodology. The primary
component with a mass of 0.945 +/- 0.045 Msun has a large radius (1.378 +/-
0.058 Rsun) indicating that the system is quite old, ~9.5 Gyr. The M-dwarf
secondary mass of 0.186 +/- 0.010 Msun and radius of 0.209 +/- 0.011 Rsun are
fully consistent with stellar evolutionary models. However, from the
near-infrared secondary eclipse light curve, the M dwarf is found to have an
effective temperature of 3922 +/- 42 K, which is ~600 K hotter than predicted
by theoretical models. We discuss different scenarios to explain this
temperature discrepancy. The case of J0113+31 for which we can measure mass,
radius, temperature and metallicity, highlights the importance of deriving
mass, radius and temperature as a function of metallicity for M dwarfs to
better understand the lowest mass stars. The EBLM Project will define the
relationship between mass, radius, temperature and metallicity for M dwarfs
providing important empirical constraints at the bottom of the main sequence.Comment: 13 pages, 7 figures. Accepted for publication in A&
- …
