99 research outputs found

    Moving Toward Social Justice Through Sport: An Exploration into the Ability of Intercollegiate Coaches of Women’s Teams to Effect Social Change

    Get PDF
    At the present time, a great number of American schools and certainly the majority of American sport teams are not taking on the responsibility of teaching young women and men the value of cooperation, democratic citizenship, and critical thinking. Because of this, critical educators have begun advocating for a movement in the education system called critical pedagogy, in which it has been theorized that schools can become sites for social transformation and emancipation (McLaren, 2003). There is a similar movement in physical education teacher education programs (Fernandez-Balboa, 1997; Cushion, Armour, & Jones, 2003), but no such actions have been taken in the sport arena. As a result of this dearth, this paper puts forth a model of athletic praxis which promotes social transformation through sport. The model for athletic praxis is based on the data from an empirical study that was designed to explore the spaces and perceived barriers identified by intercollegiate coaches of women’s teams when it comes to the issue of addressing social difference and justice with their athletes. The data was subsequently infused with a model called cultural studies as praxis (Wright, 2002) that currently exists in the education field. Athletic praxis consists of three components: theoretical preparation, service learning for social justice, and structured reflection. It is argued in this dissertation that, by incorporating the components of athletic praxis into the sport setting, female athletes could develop a heightened sense of civic responsibility during their collegiate career. In this way, sport has the ability to play a key role in an individual’s education toward democratic citizenship. Integrating these principles into sport could result in large groups of young women who feel a sense of responsibility to their surrounding community and who see themselves as potential agents of social change. As such, the athletic arena could become another means of working toward social justice in our society

    Best practices for the diagnosis and evaluation of infants with robin sequence:a clinical consensus report

    Get PDF
    Importance: Robin sequence (RS) is a congenital condition characterized by micrognathia, glossoptosis, and upper airway obstruction. Currently, no consensus exists regarding the diagnosis and evaluation of children with RS. An international, multidisciplinary consensus group was formed to begin to overcome this limitation. Objective: To report a consensus-derived set of best practices for the diagnosis and evaluation of infants with RS as a starting point for defining standards and management. Evidence Review: Based on a literature review and expert opinion, a clinical consensus report was generated. Findings: Because RS can occur as an isolated condition or as part of a syndrome or multiple-anomaly disorder, the diagnostic process for each newborn may differ. Micrognathia is hypothesized as the initiating event, but the diagnosis of micrognathia is subjective. Glossoptosis and upper airway compromise complete the primary characteristics of RS. It can be difficult to judge the severity of tongue base airway obstruction, and the possibility of multilevel obstruction exists. The initial assessment of the clinical features and severity of respiratory distress is important and has practical implications. Signs of upper airway obstruction can be intermittent and are more likely to be present when the infant is asleep. Therefore, sleep studies are recommended. Feeding problems are common and may be exacerbated by the presence of a cleft palate. The clinical features and their severity can vary widely and ultimately dictate the required investigations and treatments. Conclusions and Relevance: Agreed-on recommendations for the initial evaluation of RS and clinical descriptors are provided in this consensus report. Researchers and clinicians will ideally use uniform definitions and comparable assessments. Prospective studies and the standard application of validated assessments are needed to build an evidence base guiding standards of care for infants and children with RS

    An efficient and combined placental T1-ADC acquisition in pregnancies with and without pre-eclampsia

    Get PDF
    PURPOSE: To provide a new approach to jointly assess microstructural and molecular properties of the human placenta in vivo fast and efficiently and to present initial evidence in cohorts of healthy pregnancies and those affected by pre-eclampsia. METHODS: Slice and diffusion preparation shuffling, built on the previously proposed ZEBRA method, is presented as a robust and fast way to obtain urn:x-wiley:07403194:media:mrm28809:mrm28809-math-0003 and apparent diffusivity coefficient (ADC) values. Joint modeling and evaluation is performed on a cohort of healthy and pre-eclamptic participants at 3T. RESULTS: The datasets show the ability to obtain robust and fast urn:x-wiley:07403194:media:mrm28809:mrm28809-math-0004-ADC measurements. Significant decay over gestation in urn:x-wiley:07403194:media:mrm28809:mrm28809-math-0005 (−11 ms/week, urn:x-wiley:07403194:media:mrm28809:mrm28809-math-0006) and a trend toward significance in ADC (−0.23 mm/urn:x-wiley:07403194:media:mrm28809:mrm28809-math-0007/week, P = .08) values can be observed in a control cohort. Values for the pre-eclamptic pregnancies show a negative trend for both ADC and T1. CONCLUSIONS: The presented sequence allows the simultaneous acquisition of 2 of the most promising quantitative parameters to study placental insufficiency—identified individually as relevant in previous studies—in under 2 minutes. This allows dynamic assessment of physiological processes, reduced inconsistency in spatial comparisons due to reduced motion artefacts and opens novel avenues for analysis. Initial results in pre-eclamptic placentas, with depicted changes in both ADC and T1, illustrate its potential to identify cases of placental insufficiency. Future work will focus on expanding the field-of-view using multi-band acceleration techniques and the expansion to larger and more diverse patient groups

    In utero diffusion MRI: challenges, advances, and applications

    Get PDF
    In utero diffusion magnetic resonance imaging (MRI) provides unique opportunities to noninvasively study the microstructure of tissue during fetal development. A wide range of developmental processes, such as the growth of white matter tracts in the brain, the maturation of placental villous trees, or the fibers in the fetal heart remain to be studied and understood in detail. Advances in fetal interventions and surgery furthermore increase the need for ever more precise antenatal diagnosis from fetal MRI. However, the specific properties of the in utero environment, such as fetal and maternal motion, increased field-of-view, tissue interfaces and safety considerations, are significant challenges for most MRI techniques, and particularly for diffusion. Recent years have seen major improvements, driven by the development of bespoke techniques adapted to these specific challenges in both acquisition and processing. Fetal diffusion MRI, an emerging research tool, is now adding valuable novel information for both research and clinical questions. This paper will highlight specific challenges, outline strategies to target them, and discuss two main applications: fetal brain connectomics and placental maturation

    Data-driven multi-contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping

    Get PDF
    We introduce and demonstrate an unsupervised machine learning technique for spectroscopic analysis of quantitative MRI experiments. Our algorithm supports estimation of one-dimensional spectra from single-contrast data, and multidimensional correlation spectra from simultaneous multi-contrast data. These spectrum-based approaches allow model-free investigation of tissue properties, but require regularised inversion of a Laplace transform or Fredholm integral, which is an ill-posed calculation. Here we present a method that addresses this limitation in a data-driven way. The algorithm simultaneously estimates a canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling information across whole images to regularise the ill-posed problem. We show in simulations that our algorithm substantially outperforms current voxelwise spectral approaches. We demonstrate the method on multi-contrast diffusion-relaxometry placental MRI scans, revealing anatomically-relevant sub-structures, and identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate spectra, opening up the possibility of quantitative MRI spectroscopy in a wide range of new applications. Our InSpect code is available at github.com/paddyslator/inspect

    Design and in vitro anticancer assessment of a click chemistry-derived dinuclear copper artificial metallo-nuclease

    Get PDF
    Copper compounds with artificial metallo-nuclease (AMN) activity are mechanistically unique compared to established metallodrugs. Here, we describe the development of a new dinuclear copper AMN, Cu2-BPL-C6 (BPL-C6 = bis-1,10-phenanthroline-carbon-6), prepared using click chemistry that demonstrates site-specific DNA recognition with low micromolar cleavage activity. The BPL-C6 ligand was designed to force two redox-active copper centres—central for enhancing AMN activity—to bind DNA, via two phenanthroline ligands separated by an aliphatic linker. DNA-binding experiments, involving circular dichroism spectroscopy, agarose gel electrophoresis and fluorescence quenching, revealed a preference for binding with adenine-thymine-rich DNA. The oxidative cleavage mechanism of Cu2-BPL-C6 was then elucidated using in vitro molecular and biophysical assays, including in-liquid atomic force microscopy analysis, revealing potent DNA cleavage mediated via superoxide and hydrogen peroxide oxidative pathways. Single-molecule analysis with peripheral blood mononuclear cells identified upregulated single-strand DNA lesions in Cu2-BPL-C6-treated cells. Using specific base excision repair (BER) enzymes, we showed that Endo IV selectively repairs these lesions indicating that the complex generates apurinic and apyrimidinic adducts. Broad spectrum anticancer evaluation of BPL-C6 was performed by the National Cancer Institute’s 60 human cell line screen (NCI-60) and revealed selectivity for certain melanoma, breast, colon and non-small cell lung cancer cell lines

    Multi-modal functional MRI to explore placental function over gestation

    Get PDF
    Purpose: To investigate, visualize and quantify the physiology of the human placenta in several dimensions ‐ functional, temporal over gestation, and spatial over the whole organ. Methods: Bespoke MRI techniques, combining a rich diffusion protocol, anatomical data and T2* mapping together with a multi‐modal pipeline including motion correction and extracted quantitative features were developed and employed on pregnant women between 22 and 38 weeks gestational age including two pregnancies diagnosed with pre‐eclampsia. Results: A multi‐faceted assessment was demonstrated showing trends of increasing lacunarity, and decreasing T2* and diffusivity over gestation. Conclusions: The obtained multi‐modal acquisition and quantification shows promising opportunities for studying evolution, adaptation and compensation processes

    Respiration resolved imaging with continuous stable state 2D acquisition using linear frequency SWEEP

    Get PDF
    PURPOSE: To investigate the potential of continuous radiofrequency (RF) shifting (SWEEP) as a technique for creating densely sampled data while maintaining a stable signal state for dynamic imaging. METHODS: We present a method where a continuous stable state of magnetization is swept smoothly across the anatomy of interest, creating an efficient approach to dense multiple 2D slice imaging. This is achieved by introducing a linear frequency offset to successive RF pulses shifting the excited slice by a fraction of the slice thickness with each successive repeat times (TR). Simulations and in vivo imaging were performed to assess how this affects the measured signal. Free breathing, respiration resolved 4D volumes in fetal/placental imaging is explored as potential application of this method. RESULTS: The SWEEP method maintained a stable signal state over a full acquisition reducing artifacts from unstable magnetization. Simulations demonstrated that the effects of SWEEP on slice profiles was of the same order as that produced by physiological motion observed with conventional methods. Respiration resolved 4D data acquired with this method shows reduced respiration artifacts and resilience to non-rigid and non-cyclic motion. CONCLUSIONS: The SWEEP method is presented as a technique for improved acquisition efficiency of densely sampled short-TR 2D sequences. Using conventional slice excitation the number of RF pulses required to enter a true steady state is excessively high when using short-TR 2D acquisitions, SWEEP circumvents this limitation by creating a stable signal state that is preserved between slices

    Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies

    Get PDF
    The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise

    A trackable trinuclear platinum complex for breast cancer treatment.

    Get PDF
    Cancer remains a leading cause of death, with triple-negative breast cancer (TNBC) being particularly significant due to limited treatment options. As such, there is interest in anticancer polynuclear platinum(II) complexes, attributed to their unique DNA-binding modes and potential against therapy-resistant cancer phenotypes. However, a persistent challenge with polynuclear compounds is their lack of cellular trackability, hindering their effectiveness and monitoring in clinical settings. Here, we report the preparation of a new azide-appended trinuclear platinum complex, N3-TriplatinNC, and characterize its DNA-targeting, cytotoxicity, and topoisomerase relaxation properties from the nanoscale to the macroscale. Using single-molecule biophysics and in-liquid atomic force microscopy, N3-TriplatinNC was identified as a powerful DNA recognition agent with remarkable potential towards the TNBC cell line, MDA-MB-231. Installation of the azide handle on the polynuclear complex was achieved using a first-in-class approach to produce a complex that retained analogous biological activity to the parent TriplatinNC. Importantly, the azide handle facilitates in situ click chemistry for tracking cellular localization, with subsequent xenograft studies demonstrating in vivo antitumoural potential
    corecore