483 research outputs found
On genus expansion of knot polynomials and hidden structure of Hurwitz tau-functions
In the genus expansion of the HOMFLY polynomials their representation
dependence is naturally captured by symmetric group characters. This
immediately implies that the Ooguri-Vafa partition function (OVPF) is a Hurwitz
tau-function. In the planar limit involving factorizable special polynomials,
it is actually a trivial exponential tau-function. In fact, in the double
scaling Kashaev limit (the one associated with the volume conjecture) dominant
in the genus expansion are terms associated with the symmetric representations
and with the integrability preserving Casimir operators, though we stop one
step from converting this fact into a clear statement about the OVPF behavior
in the vicinity of q=1. Instead, we explain that the genus expansion provides a
hierarchical decomposition of the Hurwitz tau-function, similar to the
Takasaki-Takebe expansion of the KP tau-functions. This analogy can be helpful
to develop a substitute for the universal Grassmannian description in the
Hurwitz tau-functions.Comment: 8 page
Orthogonal Polynomials in Mathematical Physics
This is a review of (-)hypergeometric orthogonal polynomials and their
relation to representation theory of quantum groups, to matrix models, to
integrable theory, and to knot theory. We discuss both continuous and discrete
orthogonal polynomials and consider their various generalizations. The review
also includes the orthogonal polynomials into a generic framework of
(-)hypergeometric functions and their integral representations. In
particular, this gives rise to relations with conformal blocks of the Virasoro
algebra.Comment: 46 page
Gaussian distribution of LMOV numbers
Recent advances in knot polynomial calculus allowed us to obtain a huge
variety of LMOV integers counting degeneracy of the BPS spectrum of topological
theories on the resolved conifold and appearing in the genus expansion of the
plethystic logarithm of the Ooguri-Vafa partition functions. Already the very
first look at this data reveals that the LMOV numbers are randomly distributed
in genus (!) and are very well parameterized by just three parameters depending
on the representation, an integer and the knot. We present an accurate
formulation and evidence in support of this new puzzling observation about the
old puzzling quantities. It probably implies that the BPS states, counted by
the LMOV numbers can actually be composites made from some still more
elementary objects.Comment: 23 page
- …
