378 research outputs found
Young Suns Exoplanet Survey: Detection of a wide-orbit planetary-mass companion to a solar-type Sco-Cen member
The Young Suns Exoplanet Survey consists of a homogeneous sample of 70 young, solar-mass stars located in the Lower Centaurus-Crux subgroup of the Scorpius-Centaurus association with an average age of 15 ± 3 Myr. We report the detection of a co-moving companion around the K3IV star TYC 8998-760-1 (2MASSJ13251211–6456207) that is located at a distance of 94.6 ± 0.3 pc using SPHERE/IRDIS on the VLT. Spectroscopic observations with VLT/X-SHOOTER constrain the mass of the star to 1.00±0.02M⊙ and an age of 16.7±1.4 Myr. The companion TYC 8998-760-1 b is detected at a projected separation of 1.71″, which implies a projected physical separation of 162 au. Photometric measurements ranging from Y to M band provide a mass estimate of 14±3 M_(jup) by comparison to BT-Settl and AMES-dusty isochrones, corresponding to a mass ratio of q = 0.013 ± 0.003 with respect to the primary. We rule out additional companions to TYC 8998-760-1 that are more massive than 12 M_(jup) and farther than 12 au away from the host. Future polarimetric and spectroscopic observations of this system with ground and space based observatories will facilitate testing of formation and evolution scenarios shaping the architecture of the circumstellar environment around this ‘young Sun’
High-contrast imaging with METIS
The Mid-infrared E-ELT Imager and Spectrograph (METIS) for the European Extremely Large Telescope (E-ELT) consists of diffraction-limited imagers that cover 3 to 14 microns with medium resolution (R 5000) long slit spectroscopy, and an integral field spectrograph for high spectral resolution spectroscopy (R 100,000) over the L and M bands. One of the science cases that METIS addresses is the characterization of faint circumstellar material and exoplanet companions through imaging and spectroscopy. We present our approach for high contrast imaging with METIS, covering diffraction suppression with coronagraphs, the removal of slowly changing optical aberrations with focal plane wavefront sensing, interferometric imaging with sparse aperture masks, and observing strategies for both the imagers and IFU image slicers
Chemical spots in the absence of magnetic field in the binary HgMn star 66 Eridani
According to our current understanding, a subclass of the upper main sequence
chemically peculiar stars, called mercury-manganese (HgMn), is non-magnetic.
Nevertheless, chemical inhomogeneities were recently discovered on their
surfaces. At the same time, no global magnetic fields stronger than 1-100 G are
detected by modern studies. The goals of our study are to search for magnetic
field in the HgMn binary system 66 Eri and to investigate chemical spots on the
stellar surfaces of both components. Our analysis is based on high quality
spectropolarimetric time-series observations obtained during 10 consecutive
nights with the HARPSpol instrument at the ESO 3.6-m telescope. To increase the
sensitivity of the magnetic field search we employed a least-squares
deconvolution (LSD). We used spectral disentangling to measure radial
velocities and study line profile variability. Chemical spot geometry was
reconstructed using multi-line Doppler imaging. We report a non-detection of
magnetic field in 66 Eri, with error bars 10-24 G for the longitudinal field.
Circular polarization profiles also do not indicate any signatures of complex
surface magnetic fields. For a simple dipolar field configuration we estimated
an upper limit of the polar field strength to be 60-70 G. For the HgMn
component we found variability in spectral lines of Ti, Ba, Y, and Sr with the
rotational period equal to the orbital one. The surface maps of these elements
reconstructed with the Doppler imaging technique, show relative underabundance
on the hemisphere facing the secondary component. The contrast of chemical
inhomogeneities ranges from 0.4 for Ti to 0.8 for Ba.Comment: 13 pages, 14 figure
Successes and challenges of the APP Coronagraph
The Apodizing Phase Plate (APP) coronagraph has been used to image the exoplanet β Pictoris b and the protoplanet candidate around HD 100546, and is currently in use in surveys with NaCo at the VLT. Its success is due to its tolerance to tip-tilt pointing errors in current AO systems, which degrade the performance of nearly all other coronagraphs. Currently the sensitivity of the APP is limited by non-common path errors in the science camera systems and by its chromatic behaviour. We present the achromatized Vector APP coronagraph and address how we will measure and minimise non-common path errors with Focal Plane Wavefront Sensing algorithm
Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 I. Spectropolarimetric observations in all four Stokes parameters
High-resolution spectropolarimetric observations provide simultaneous
information about stellar magnetic field topologies and three-dimensional
distributions of chemical elements. Here we present analysis of a unique full
Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap
star HD 24712. The goal of our work is to examine circular and linear
polarization signatures inside spectral lines and to study variation of the
stellar spectrum and magnetic observables as a function of rotational phase. HD
24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over
a period of 2010-2011. The resulting spectra have S/N ratio of 300-600 and
resolving power exceeding 100000. The multiline technique of least-squares
deconvolution (LSD) was applied to combine information from the spectral lines
of Fe-peak and rare-earth elements. We used the HARPSPol spectra of HD 24712 to
study the morphology of the Stokes profile shapes in individual spectral lines
and in LSD Stokes profiles corresponding to different line masks. From the LSD
Stokes V profiles we measured the longitudinal component of the magnetic field,
, with an accuracy of 5-10 G. We also determined the net linear
polarization from the LSD Stokes Q and U profiles. We determined an improved
rotational period of the star, P_rot = 12.45812 +/- 0.00019d. We measured
from the cores of Halpha and Hbeta lines. The analysis of measurements
showed no evidence for a significant radial magnetic field gradient in the
atmosphere of HD 24712. We used our and net linear polarization
measurements to determine parameters of the dipolar magnetic field topology. We
found that magnetic observables can be reasonably well reproduced by the
dipolar model. We discovered rotational modulation of the Halpha core and
related it a non-uniform surface distribution of rare-earth elements.Comment: Accepted for publication in A&
Observations of solar scattering polarization at high spatial resolution
The weak, turbulent magnetic fields that supposedly permeate most of the
solar photosphere are difficult to observe, because the Zeeman effect is
virtually blind to them. The Hanle effect, acting on the scattering
polarization in suitable lines, can in principle be used as a diagnostic for
these fields. However, the prediction that the majority of the weak, turbulent
field resides in intergranular lanes also poses significant challenges to
scattering polarization observations because high spatial resolution is usually
difficult to attain. We aim to measure the difference in scattering
polarization between granules and intergranules. We present the respective
center-to-limb variations, which may serve as input for future models. We
perform full Stokes filter polarimetry at different solar limb positions with
the CN band filter of the Hinode-SOT Broadband Filter Imager, which represents
the first scattering polarization observations with sufficient spatial
resolution to discern the granulation. Hinode-SOT offers unprecedented spatial
resolution in combination with high polarimetric sensitivity. The CN band is
known to have a significant scattering polarization signal, and is sensitive to
the Hanle effect. We extend the instrumental polarization calibration routine
to the observing wavelength, and correct for various systematic effects. The
scattering polarization for granules (i.e., regions brighter than the median
intensity of non-magnetic pixels) is significantly larger than for
intergranules. We derive that the intergranules (i.e., the remaining
non-magnetic pixels) exhibit (9.8 \pm 3.0)% less scattering polarization for
0.2<u<0.3, although systematic effects cannot be completely excluded. These
observations constrain MHD models in combination with (polarized) radiative
transfer in terms of CN band line formation, radiation anisotropy, and magnetic
fields.Comment: Accepted for publication in A&
The search for magnetic fields in mercury-manganese stars
We performed a highly sensitive search for magnetic fields on a large set of
HgMn stars. With the aid of a new polarimeter attached to the HARPS
spectrometer at the ESO 3.6m-telescope, we obtained high-quality circular
polarization spectra of 41 single and double HgMn stars. Using a multi-line
analysis technique on each star, we co-added information from hundreds of
spectral lines resulting in significantly greater sensitivity to the presence
of magnetic fields, including very weak fields. For the 47 individual objects
studied, including 6 components of SB2 systems, we do not detect any magnetic
fields at greater than the 3 sigma level. The lack of detection in the circular
polarization profiles indicates that if strong fields are present on these
stars, they must have complex surface topologies. For simple global fields, our
detection limits imply upper limits to the fields present of 2-10 Gauss in the
best cases. We conclude that HgMn stars lack large-scale magnetic fields,
typical for spotted magnetic Ap stars, sufficient to form and sustain the
chemical spots observed on HgMn stars. Our study confirms that in addition to
magnetically altered atomic diffusion, there exists another differentiation
mechanism operating in the atmospheres of late-B main sequence stars which can
compositional inhomogeneities on their surfaces.Comment: 12 pages, 8 figures, 2 table
Designing citizen science tools for learning: lessons learnt from the iterative development of nQuire
This paper reports on a 4-year research and development case study about the design of citizen science tools for inquiry learning. It details the process of iterative pedagogy-led design and evaluation of the nQuire toolkit, a set of web-based and mobile tools scaffolding the creation of online citizen science investigations. The design involved an expert review of inquiry learning and citizen science, combined with user experience studies involving more than 200 users. These have informed a concept that we have termed ‘citizen inquiry’, which engages members of the public alongside scientists in setting up, running, managing or contributing to citizen science projects with a main aim of learning about the scientific method through doing science by interaction with others. A design-based research (DBR) methodology was adopted for the iterative design and evaluation of citizen science tools. DBR was focused on the refinement of a central concept, ‘citizen inquiry’, by exploring how it can be instantiated in educational technologies and interventions. The empirical evaluation and iteration of technologies involved three design experiments with end users, user interviews, and insights from pedagogy and user experience experts. Evidence from the iterative development of nQuire led to the production of a set of interaction design principles that aim to guide the development of online, learning-centred, citizen science projects. Eight design guidelines are proposed: users as producers of knowledge, topics before tools, mobile affordances, scaffolds to the process of scientific inquiry, learning by doing as key message, being part of a community as key message, every visit brings a reward, and value users and their time
- …
