817 research outputs found
Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas
We show lower bounds of and on the
randomized and quantum communication complexity, respectively, of all
-variable read-once Boolean formulas. Our results complement the recent
lower bound of by Leonardos and Saks and
by Jayram, Kopparty and Raghavendra for
randomized communication complexity of read-once Boolean formulas with depth
. We obtain our result by "embedding" either the Disjointness problem or its
complement in any given read-once Boolean formula.Comment: 5 page
Online Fault Classification in HPC Systems through Machine Learning
As High-Performance Computing (HPC) systems strive towards the exascale goal,
studies suggest that they will experience excessive failure rates. For this
reason, detecting and classifying faults in HPC systems as they occur and
initiating corrective actions before they can transform into failures will be
essential for continued operation. In this paper, we propose a fault
classification method for HPC systems based on machine learning that has been
designed specifically to operate with live streamed data. We cast the problem
and its solution within realistic operating constraints of online use. Our
results show that almost perfect classification accuracy can be reached for
different fault types with low computational overhead and minimal delay. We
have based our study on a local dataset, which we make publicly available, that
was acquired by injecting faults to an in-house experimental HPC system.Comment: Accepted for publication at the Euro-Par 2019 conferenc
RELEASE: A High-level Paradigm for Reliable Large-scale Server Software
Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene
Structural motifs of biomolecules
Biomolecular structures are assemblies of emergent anisotropic building
modules such as uniaxial helices or biaxial strands. We provide an approach to
understanding a marginally compact phase of matter that is occupied by proteins
and DNA. This phase, which is in some respects analogous to the liquid crystal
phase for chain molecules, stabilizes a range of shapes that can be obtained by
sequence-independent interactions occurring intra- and intermolecularly between
polymeric molecules. We present a singularityfree self-interaction for a tube
in the continuum limit and show that this results in the tube being positioned
in the marginally compact phase. Our work provides a unified framework for
understanding the building blocks of biomolecules.Comment: 13 pages, 5 figure
Education and articulation: Laclau and Mouffe’s radical democracy in school
This paper outlines a theory of radical democratic education by addressing a key concept in Laclau and Mouffe’s Hegemony and Socialist Strategy: articulation. Through their concept of articulation, Laclau and Mouffe attempt to liberate Gramsci’s theory of hegemony from Marxist economism, and adapt it to a political sphere inhabited by a plurality of struggles and agents none of which is predominant. However, while for Gramsci the political process of hegemony formation has an explicit educational dimension, Laclau and Mouffe ignore this dimension altogether. My discussion starts with elaborating the concept of articulation and analysing it in terms of three dimensions: performance, connection and transformation. I then address the role of education in Gramsci’s politics, in which the figure of the intellectual is central, and argue that radical democratic education requires renouncing that figure. In the final section, I offer a theory of such education, in which both teacher and students articulate their political differences and identities
B-spline algebraic diagrammatic construction: Application to photoionization cross-sections and high-order harmonic generation
New Developments in Quantum Algorithms
In this survey, we describe two recent developments in quantum algorithms.
The first new development is a quantum algorithm for evaluating a Boolean
formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This
provides quantum speedups for any problem that can be expressed via Boolean
formulas. This result can be also extended to span problems, a generalization
of Boolean formulas. This provides an optimal quantum algorithm for any Boolean
function in the black-box query model.
The second new development is a quantum algorithm for solving systems of
linear equations. In contrast with traditional algorithms that run in time
O(N^{2.37...}) where N is the size of the system, the quantum algorithm runs in
time O(\log^c N). It outputs a quantum state describing the solution of the
system.Comment: 11 pages, 1 figure, to appear as an invited survey talk at MFCS'201
Improving Scalability and Maintenance of Software for High-Performance Scientific Computing by Combining MDE and Frameworks
International audienceIn recent years, numerical simulation has attracted increasing interest within industry and among academics. Paradoxically, the development and maintenance of high performance scientific computing software has become more complex due to the diversification of hardware architectures and their related programming languages and libraries. In this paper, we share our experience in using model-driven development for numerical simulation software. Our approach called MDE4HPC proposes to tackle development complexity by using a domain specific modeling language to describe abstract views of the software. We present and analyse the results obtained with its implementation when deriving this abstract model to target Arcane, a development framework for 2D and 3D numerical simulation software
The Luminosity Function of Galaxies in SDSS Commissioning Data
During commissioning observations, the Sloan Digital Sky Survey (SDSS) has
produced one of the largest existing galaxy redshift samples selected from CCD
images. Using 11,275 galaxies complete to r^* = 17.6 over 140 square degrees,
we compute the luminosity function of galaxies in the r^* band over a range -23
< M < -16 (for h=1). The result is well-described by a Schechter function with
parameters phi_* = 0.0146 +/- 0.0012 h^3 Mpc^{-3}, M_* = -20.83 +/- 0.03, and
alpha = -1.20 +/- 0.03. The implied luminosity density in r^* is j = (2.6 +/-
0.3) x 10^8 h L_sun Mpc^{-3}. The surface brightness selection threshold has a
negligible impact for M < -18. We measure the luminosity function in the u^*,
g^*, i^*, and z^* bands as well; the slope at low luminosities ranges from
alpha=-1.35 to alpha=-1.2. We measure the bivariate distribution of r^*
luminosity with half-light surface brightness, intrinsic color, and morphology.
High surface brightness, red, highly concentrated galaxies are on average more
luminous than low surface brightness, blue, less concentrated galaxies. If we
synthesize results for R-band or b_j-band using the Petrosian magnitudes with
which the SDSS measures galaxy fluxes, we obtain luminosity densities 2.0 times
that found by the Las Campanas Redshift Survey in R and 1.4 times that found by
the Two-degree Field Galaxy Redshift Survey in b_j. We are able to reproduce
the luminosity functions obtained by these surveys if we also mimic their
isophotal limits for defining galaxy magnitudes, which are shallower and more
redshift dependent than the Petrosian magnitudes used by the SDSS. (Abridged)Comment: 49 pages, including 23 figures, accepted by AJ; some minor textual
changes, plus an important change in comparison to LCR
- …
