46 research outputs found
Optimization of Convolutional Neural Network ensemble classifiers by Genetic Algorithms
Breast cancer exhibits a high mortality rate and it is the most invasive cancer in women. An analysis from histopathological images could predict this disease. In this way, computational image processing might support this task. In this work a proposal which employes deep learning convolutional neural networks is presented. Then, an ensemble of networks is considered in order to obtain an enhanced recognition performance of the system by the consensus of the networks of the ensemble. Finally, a genetic algorithm is also considered to choose the networks that belong to the ensemble. The proposal has been tested by carrying out several experiments with a set of benchmark images.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Recommended from our members
Evaluation of Colour Pre-processing on Patch-Based Classification of H&E-Stained Images
This paper compares the effects of colour pre-processing on the classification performance of H&E-stained images. Variations in the tissue preparation procedures, acquisition systems, stain conditions and reagents are all source of artifacts that can affect negatively computer-based classification. Pre-processing methods such as colour constancy, transfer and deconvolution have been proposed to compensate the artifacts. In this paper we compare quantitatively the combined effect of six colour pre-processing procedures and 12 colour texture descriptors on patch-based classification of H&E-stained images. We found that colour pre-processing had negative effects on accuracy in most cases – particularly when used with colour descriptors. However, some pre-processing procedures proved beneficial when employed in conjunction with classic texture descriptors such as co-occurrence matrices, Gabor filters and Local Binary Patterns
