4,950 research outputs found

    Integrals of psi-classes over double ramification cycles

    Full text link
    DR-cycles are certain cycles on the moduli space of curves. Intuitively, they parametrize curves that allow a map to \mathbb{P}^1 with some specified ramification profile over two points. They are known to be tautological classes, but in general there is no known expression in terms of standard tautological classes. In this paper, we compute the intersection numbers of those DR-cycles with any monomials in psi-classes when this intersection is zero-dimensional.Comment: 43 page

    A Sterile Neutrino Search with Kaon Decay-at-rest

    Full text link
    Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay-at-rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, such a source could provide discovery-level sensitivity to the neutrino oscillation parameter space indicative of a sterile neutrino. Current and future intense >3 GeV kinetic energy proton facilities around the world can be employed for this experimental concept.Comment: 6 pages, 6 figure

    Coherent Neutrino Scattering in Dark Matter Detectors

    Full text link
    Coherent elastic neutrino- and WIMP-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted Standard Model process. A high intensity pion- and muon- decay-at-rest neutrino source recently proposed for oscillation physics at underground laboratories would provide the neutrinos for these measurements. In this paper, we calculate raw rates for various target materials commonly used in dark matter detectors and show that discovery of this interaction is possible with a 2 ton\cdotyear GEODM exposure in an optimistic energy threshold and efficiency scenario. We also study the effects of the neutrino source on WIMP sensitivity and discuss the modulated neutrino signal as a sensitivity/consistency check between different dark matter experiments at DUSEL. Furthermore, we consider the possibility of coherent neutrino physics with a GEODM module placed within tens of meters of the neutrino source.Comment: 8 pages, 4 figure

    Light Spectrum and Decay Constants in Full QCD with Wilson Fermions

    Get PDF
    We present results from an analysis of the light spectrum and the decay constants f_{\pi} and f_V^{-1} in Full QCD with n_f=2 Wilson fermions at a coupling of beta=5.6 on a 16^3x32 lattice.Comment: 3 pages, LaTeX with 4 eps figures, Talk presented at LATTICE96(spectrum

    Bottomonium from NRQCD with Dynamical Wilson Fermions

    Full text link
    We present results for the b \bar b spectrum obtained using an O(M_bv^6)-correct non-relativistic lattice QCD action. Propagators are evaluated on SESAM's three sets of dynamical gauge configurations generated with two flavours of Wilson fermions at beta = 5.6. Compared to a quenched simulation at equivalent lattice spacing we find better agreement of our dynamical data with experimental results in the spin-independent sector but observe no unquenching effects in hyperfine-splittings. To pin down the systematic errors we have also compared quenched results in different ``tadpole'' schemes and used a lower order action.Comment: Talk presented at LATTICE'97, 3 pages, Late

    Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering

    Full text link
    Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at Δm21\Delta m^2 \sim 1 eV2^2. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.Comment: 10 pages, 7 figure

    Improved Upsilon Spectrum with Dynamical Wilson Fermions

    Full text link
    We present results for the b \bar b spectrum obtained using an O(M_bv^6)-correct non-relativistic lattice QCD action, where M_b denotes the bare b-quark mass and v^2 is the mean squared quark velocity. Propagators are evaluated on SESAM's three sets of dynamical gauge configurations generated with two flavours of Wilson fermions at beta = 5.6. These results, the first of their kind obtained with dynamical Wilson fermions, are compared to a quenched analysis at equivalent lattice spacing, beta = 6.0. Using our three sea-quark values we perform the ``chiral'' extrapolation to m_eff = m_s/3, where m_s denotes the strange quark mass. The light quark mass dependence is found to be small in relation to the statistical errors. Comparing the full QCD result to our quenched simulation we find better agreement of our dynamical data with experimental results in the spin-independent sector but observe no unquenching effects in hyperfine-splittings. To pin down the systematic errors we have also compared quenched results in different ``tadpole'' schemes as well as using a lower order action. We find that spin-splittings with an O(M_bv^4) action are O(10%) higher compared to O(M_bv^6) results. Relative to the results obtained with the plaquette method the Landau gauge mean link tadpole scheme raises the spin splittings by about the same margin so that our two improvements are opposite in effect.Comment: 24 pages (latex file, Phys Rev D style file, uses epsf-style

    Cyclotrons as Drivers for Precision Neutrino Measurements

    Get PDF
    As we enter the age of precision measurement in neutrino physics, improved flux sources are required. These must have a well-defined flavor content with energies in ranges where backgrounds are low and cross section knowledge is high. Very few sources of neutrinos can meet these requirements. However, pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for decay-at-rest sources are cyclotron accelerators, which are compact and relatively inexpensive. This paper describes a scheme to produce decay-at-rest sources driven by such cyclotrons, developed within the DAEdALUS program. Examples of the value of the high precision beams for pursuing Beyond Standard Model interactions are reviewed. New results on a combined DAEdALUS--Hyper-K search for CP-violation that achieve errors on the mixing matrix parameter of 4 degrees to 12 degrees are presented.Comment: This paper was invited by the journal Advances in High Energy Physics for their upcoming special issue on "Neutrino Masses and Oscillations," which will be published on the 100th anniversary of Pontecorvo's birt
    corecore