11,952 research outputs found
Environmental Impact on the Southeast Limb of the Cygnus Loop
We analyze observations from the Chandra X-ray Observatory of the southeast
knot of the Cygnus Loop supernova remnant. In this region, the blast wave
propagates through an inhomogeneous environment. Extrinsic differences and
subsequent multiple projections along the line of sight rather than intrinsic
shock variations, such as fluid instabilities, account for the apparent
complexity of the images. Interactions between the supernova blast wave and
density enhancements of a large interstellar cloud can produce the
morphological and spectral characteristics. Most of the X-ray flux arises in
such interactions, not in the diffuse interior of the supernova remnant.
Additional observations at optical and radio wavelengths support this account
of the existing interstellar medium and its role in shaping the Cygnus Loop,
and they demonstrate that the southeast knot is not a small cloud that the
blast wave has engulfed. These data are consistent with rapid equilibration of
electron and ion temperatures behind the shock front, and the current blast
wave velocity v_{bw} approx 330 km/s. Most of this area does not show strong
evidence for non-equilibrium ionization conditions, which may be a consequence
of the high densities of the bright emission regions.Comment: To appear in ApJ, April 1, 200
Writhing Geometry at Finite Temperature: Random Walks and Geometric phases for Stiff Polymers
We study the geometry of a semiflexible polymer at finite temperatures. The
writhe can be calculated from the properties of Gaussian random walks on the
sphere. We calculate static and dynamic writhe correlation functions. The
writhe of a polymer is analogous to geometric or Berry phases studied in optics
and wave mechanics. Our results can be applied to confocal microscopy studies
of stiff filaments and to simulations of short DNA loopsComment: 11 pages with 5 figures. Latex2
Time-Dependent Models for Dark Matter at the Galactic Center
The prospects of indirect detection of dark matter at the galactic center
depend sensitively on the mass profile within the inner parsec. We calculate
the distribution of dark matter on sub-parsec scales by integrating the
time-dependent Fokker-Planck equation, including the effects of
self-annihilations, scattering of dark matter particles by stars, and capture
in the supermassive black hole. We consider a variety of initial dark matter
distributions, including models with very high densities ("spikes") near the
black hole, and models with "adiabatic compression" of the baryons. The
annihilation signal after 10 Gyr is found to be substantially reduced from its
initial value, but in dark matter models with an initial spike,
order-of-magnitude enhancements can persist compared with the rate in
spike-free models, with important implications for indirect dark matter
searches with GLAST and Air Cherenkov Telescopes like HESS and CANGAROO.Comment: Four page
Distribution of sizes of erased loops for loop-erased random walks
We study the distribution of sizes of erased loops for loop-erased random
walks on regular and fractal lattices. We show that for arbitrary graphs the
probability of generating a loop of perimeter is expressible in
terms of the probability of forming a loop of perimeter when a
bond is added to a random spanning tree on the same graph by the simple
relation . On -dimensional hypercubical lattices,
varies as for large , where for , where
z is the fractal dimension of the loop-erased walks on the graph. On
recursively constructed fractals with this relation is modified
to , where is the hausdorff and
is the spectral dimension of the fractal.Comment: 4 pages, RevTex, 3 figure
Photoemission from Au and Cu into CdS
Many metal-semiconductor surface barrier rectifiers
show photosensitivity for photon energies (hv) less than the semiconductor energy gap (E_g).
Cases in the literature include metals evaporated
or electrodeposited on elemental and III-V
compound semiconductor surfaces. In these studies
the source of the low-energy photocurrent, when
hv < E_g, was shown to be the photoemission of
carriers over the Schottky barrier between the metal
film and the semiconductor. An extensive investigation
has been reported for a series of metals,
particularly Cu and Au, electroplated on n-type CdS
with the conclusion that here also photoemission
from the metal is responsible for most of the low-energy photovoltage. However, recent studies have
questioned this conclusion for the CdS case. One
study proposed that the origin of the low-energy
photovoltaic response is electron photoexcitation
from Cu impurities located in the CdS and within a
diffusion length of the space charge region. Hole
conduction probably in the 3d Cu levels was postulated
for these samples, which had ≈ 30-ppm Cu. A second study interpreted the results as a p·n junction photovoltaic effect
Conduction Band Minima of Ga(As_(1−x)P_x)
Photoresponse of surface barriers on samples of Ga(As_(1−x_P_x) covering the range 0≤x≤1 has been measured. Thresholds corresponding to both direct and indirect band-to-band excitations within the semiconductor and also photoinjection from the metal have been identified. The threshold of the direct transition varies with composition from 1.37 eV in GaAs to 2.65 eV in GaP. The indirect transition was followed for x≳0.38 and again varied linearly from 2.2 eV in GaP to an extrapolated value in 1.62 eV in GaAs. The energy separation of the two conduction band minima in GaAs is in disagreement with previously reported values
Ionization of Rydberg atoms embedded in an ultracold plasma
We have studied the behavior of cold Rydberg atoms embedded in an ultracold
plasma. We demonstrate that even deeply bound Rydberg atoms are completely
ionized in such an environment, due to electron collisions. Using a fast pulse
extraction of the electrons from the plasma we found that the number of excess
positive charges, which is directly related to the electron temperature Te, is
not strongly affected by the ionization of the Rydberg atoms. Assuming a
Michie-King equilibrium distribution, in analogy with globular star cluster
dynamics, we estimate Te. Without concluding on heating or cooling of the
plasma by the Rydberg atoms, we discuss the range for changing the plasma
temperature by adding Rydberg atoms.Comment: To be published in P.R.
Partially asymmetric exclusion models with quenched disorder
We consider the one-dimensional partially asymmetric exclusion process with
random hopping rates, in which a fraction of particles (or sites) have a
preferential jumping direction against the global drift. In this case the
accumulated distance traveled by the particles, x, scales with the time, t, as
x ~ t^{1/z}, with a dynamical exponent z > 0. Using extreme value statistics
and an asymptotically exact strong disorder renormalization group method we
analytically calculate, z_{pt}, for particlewise (pt) disorder, which is argued
to be related to the dynamical exponent for sitewise (st) disorder as
z_{st}=z_{pt}/2. In the symmetric situation with zero mean drift the particle
diffusion is ultra-slow, logarithmic in time.Comment: 4 pages, 3 figure
Neutrino magnetohydrodynamics
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the
effects of the charged weak current on the electron-ion magnetohydrodynamic
fluid are taken into account. The model incorporates in a systematic way the
role of the Fermi neutrino weak force in magnetized plasmas. A fast
neutrino-driven short wavelengths instability associated with the magnetosonic
wave is derived. Such an instability should play a central role in strongly
magnetized plasma as occurs in supernovae, where dense neutrino beams also
exist. In addition, in the case of nonlinear or high frequency waves, the
neutrino coupling is shown to be responsible for breaking the frozen-in
magnetic field lines condition even in infinite conductivity plasmas.
Simplified and ideal NMHD assumptions were adopted and analyzed in detail
- …
