13 research outputs found
Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways
Cell Membrane Is Impaired, Accompanied by Enhanced Type III Secretion System Expression in Yersinia pestis Deficient in RovA Regulator
BACKGROUND: In the enteropathogenic Yersinia species, RovA regulates the expression of invasin, which is important for enteropathogenic pathogenesis but is inactivated in Yersinia pestis. Investigation of the RovA regulon in Y. pestis at 26 °C has revealed that RovA is a global regulator that contributes to virulence in part by the direct regulation of psaEFABC. However, the regulatory roles of RovA in Y. pestis at 37 °C, which allows most virulence factors in mammalian hosts to be expressed, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The transcriptional profile of an in-frame rovA mutant of Y. pestis biovar Microtus strain 201 was analyzed under type III secretion system (T3SS) induction conditions using microarray techniques, and it was revealed that many cell-envelope and transport/binding proteins were differentially expressed in the ΔrovA mutant. Most noticeably, many of the T3SS genes, including operons encoding the translocon, needle and Yop (Yersinia outer protein) effectors, were significantly up-regulated. Analysis of Yop proteins confirmed that YopE and YopJ were also expressed in greater amounts in the mutant. However, electrophoresis mobility shift assay results demonstrated that the His-RovA protein could not bind to the promoter sequences of the T3SS genes, suggesting that an indirect regulatory mechanism is involved. Transmission electron microscopy analysis indicated that there are small loose electron dense particle-like structures that surround the outer membrane of the mutant cells. The bacterial membrane permeability to CFSE (carboxyfluorescein diacetate succinimidyl ester) was significantly decreased in the ΔrovA mutant compared to the wild-type strain. Taken together, these results revealed the improper construction and dysfunction of the membrane in the ΔrovA mutant. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the RovA regulator plays critical roles in the construction and functioning of the bacterial membrane, which sheds considerable light on the regulatory functions of RovA in antibiotic resistance and environmental adaptation. The expression of T3SS was upregulated in the ΔrovA mutant through an indirect regulatory mechanism, which is possibly related to the altered membrane construction in the mutant
Untersuchung der Eignung heimischer Grünlandarten für die Bepflanzung von Legehennen-Auslaufflächen
Determinants of economic growth in organic farming: the case of Bavaria and Baden-Württemberg
Determinants of economic growth in organic farming: the case of Bavaria and Baden-Württemberg
Betriebsstruktur und Grobfuttererzeugung ökologisch wirtschaftender Milchviehbetriebe in Deutschland
The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes
Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life
SlyA Is a Transcriptional Regulator Involved in the Virulence of Enterococcus faecalis▿
Phylogenetic analysis of the crystal structure of the Enterococcus faecalis SlyA (EF_3002) transcriptional factor places it between the SlyA and MarR regulator subfamilies. Proteins of these families are often involved in the regulation of genes important for bacterial virulence and stress response. To gather evidence for the role of this putative regulator in E. faecalis biology, we dissected the genetic organization of the slyA-EF_3001 locus and constructed a slyA deletion mutant as well as complemented strains. Interestingly, compared to the wild-type parent, the ΔslyA mutant is more virulent in an insect infection model (Galleria mellonella), exhibits increased persistence in mouse kidneys and liver, and survives better inside peritoneal macrophages. In order to identify a possible SlyA regulon, global microarray transcriptional analysis was performed. This study revealed that the slyA-EF_3001 locus appears to be autoregulated and that 117 genes were differentially regulated in the ΔslyA mutant. In the mutant strain, 111 were underexpressed and 6 overexpressed, indicating that SlyA functions mainly as an activator of transcription
