274 research outputs found
Anomalous increase in nematic-isotropic transition temperature in dimer molecules induced by magnetic field
We have determined the nematic-isotropic transition temperature as a function of applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15K when subjected to 22T magnetic field. The increase is conjectured to be caused by a magnetic field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers
Is Hypermedia an Effective Tool for Education
Whilst there has been much mention in the literature recently concerning the development of hypermedia systems, there is very little reported work on projects to assess their effectiveness, or otherwise, in education. This paper reports on a project currently underway at the University of Southampton in the UK to develop a hypertext interface for an interactive videodisc application in biology education, and to undertake a thorough evaluation of the resulting system as used by undergraduate students at the University. The system is currently based on Apple's Hypercard and uses existing videodisc material. INTRODUCTION 1. 1 Introduction Until very recently, the costs of both hardware and software made the use of interactive videodisc (IV) systems virtually non-existent in education. Most examples of interactive video material were in the industrial training sector, where it can be very cost effective as well as educationally effective to produce videodiscs and related software designe..
Light scattering study of the “pseudo-layer” compression elastic constant in a twist-bend nematic liquid crystal
The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or “pseudo-layers”, each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining “layer” compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant Keff1. The magnitude of Keff1 is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∼10⁶ Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the “pseudo-layer” structure of the TB phase with Beff in the range 10³–10⁴ Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director
Second harmonic light scattering induced by defects in the twist-bend nematic phase of liquid crystal dimers
The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orientationally ordered mesophase -- the first distinct nematic variant discovered in many years. The NTB phase is distinguished by a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heliconical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensitive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural defects. These defects are parabolic focal conics of smectic-like ``pseudo-layers", defined by planes of equivalent phase in a coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two
Aggregation, Pretransitional Behavior, And Optical Properties In The Isotropic Phase Of Lyotropic Chromonic Liquid Crystals Studied In High Magnetic Fields
We report results on the high-field magneto-optical response of four aqueous, lyotropic, chromonic liquid crystal formulations in the isotropic phase. Measurements of the field-induced birefringence at temperatures above the isotropic-nematic coexistence region at high magnetic fields reveal qualitative differences in different materials; these differences can be attributed to the nature of aggregation and are discussed within the context of competing aggregation models. Extending these measurements to very high fields and large optical phase differences reveals the presence of an unexpected optical phenomenon: magnetic field-induced circular birefringence, measured in the Voigt geometry, in a system containing no molecularly chiral species. Possible origins of this effect are discussed
Magnetically tunable selective reflection of light by heliconical cholesterics
This work was financially supported by NSF DMR-1307674, NSF Grant No. DMR-1410378, and AFOSR (Grant No. FA9550-12-1-0037). The work utilized the facilities of the NHMFL, which is supported by NSF DMR-0084173, the State of Florida, and the U.S. Department of Energy.Peer reviewedPublisher PD
Field-testing of the rapid assessment of disability questionnaire
The Rapid Assessment of Disability (RAD) questionnaire measures the magnitude and impact of disability and aims to inform the design of disability inclusive development programs. This paper reports the psychometric evaluation of the RAD
Order and Frustration in Chiral Liquid Crystals
This paper reviews the complex ordered structures induced by chirality in
liquid crystals. In general, chirality favors a twist in the orientation of
liquid-crystal molecules. In some cases, as in the cholesteric phase, this
favored twist can be achieved without any defects. More often, the favored
twist competes with applied electric or magnetic fields or with geometric
constraints, leading to frustration. In response to this frustration, the
system develops ordered structures with periodic arrays of defects. The
simplest example of such a structure is the lattice of domains and domain walls
in a cholesteric phase under a magnetic field. More complex examples include
defect structures formed in two-dimensional films of chiral liquid crystals.
The same considerations of chirality and defects apply to three-dimensional
structures, such as the twist-grain-boundary and moire phases.Comment: 39 pages, RevTeX, 14 included eps figure
- …
