3,204 research outputs found
Refinement of Techniques Metallographic Analysis of Highly Dispersed Structures
Flaws are regularly made while developing standards and technical specifications. They can come out as minor misprints, as an insufficient description of a technique. In spite the fact that the flaws are well known, it does not come to the stage of introducing changes to standards. In this paper shows that in the normative documents is necessary to clarify the requirements for metallurgical microscopes, which are used for analysis of finely-dispersed
Influence of combined impact and cyclic loading on the overall fatigue life of forged steel, EA4T
Magnetoelectric Effect in Ni-PZT-Ni Cylindrical Layered Composite Synthesized by Electro-deposition
The magnetoelectric (ME) coupling of cylindrical trilayered composite was
studied in this paper. The Ni-lead zirconate titanate (PZT)-Ni trilayered
cylindrical composite was synthesized by electro-deposition. The maximum ME
voltage coefficient of cylindrical ME composite is 35V/cm Oe, about three times
higher than that of the plate trilayered composite with the same raw materials
and magnetostrictive- piezoelectric phase thickness ratio. The high ME voltage
coefficient of cylindrical composite owes to the self-bound effect of circle.
Moreover, the resulting complex condition can induce a double peak in the field
dependence of ME coefficient.Comment: 11 pages, 5 figure
QCD corrections to the electric dipole moment of the neutron in the MSSM
We consider the QCD corrections to the electric dipole moment of the neutron
in the Minimal Supersymmetric Standard Model. We provide a master formula for
the Wilson coefficients at the low energy scale including for the first time
the mixing between the electric and chromoelectric operators and correcting
widely used previous LO estimates. We show that, because of the mixing between
the electric and chromoelectric operators, the neutralino contribution is
always strongly suppressed. We find that, in general, the effect of the QCD
corrections is to reduce the amount of CP violation generated at the high
scale. We discuss the perturbative uncertainties of the LO computation, which
are particularly large for the gluino-mediated contribution. This motivates our
Next-to-Leading order analysis. We compute for the first time the order alpha_s
corrections to the Wilson coefficients for the gluino contributions, and
recompute the two-loop anomalous dimension for the dipole operators. We show
that the large LO uncertainty disappears once NLO corrections are taken into
account.Comment: 23 pages, 5 figures, added references, corrected typo
Family Unification, Exotic States and Light Magnetic Monopoles
Models with fermions in bifundamental representations can lead naturally to
family unification as opposed to family replication. Such models typically
predict (exotic) color singlet states with fractional electric charge, and
magnetic monopoles with multiple Dirac charge. The exotics may be at the TeV
scale, and relatively light magnetic monopoles (greater than about 10^7 GeV)
can be present in the galaxy with abundance near the Parker bound. We focus on
three family SU(4)XSU(3)XSU(3) models.Comment: 37 page
Resummed event-shape variables in DIS
We complete our study of resummed event-shape distributions in DIS by
presenting results for the class of observables that includes the current jet
mass, the C-parameter and the thrust with respect to the current-hemisphere
thrust axis. We then compare our results to data for all observables for which
data exist, fitting for alpha_s and testing the universality of
non-perturbative 1/Q effects. A number of technical issues arise, including the
extension of the concept of non-globalness to the case of discontinuous
globalness; singularities and non-convergence of distributions other than in
the Born limit; methods to speed up fixed-order Monte Carlo programs by up to
an order of magnitude, relevant when dealing with many x and Q points; and the
estimation of uncertainties on the predictions.Comment: 41 page
High-accuracy relativistic many-body calculations of van der Waals coefficients C_6 for alkaline-earth atoms
Relativistic many-body calculations of van der Waals coefficients C_6 for
dimers correlating to two ground state alkaline-earth atoms at large
internuclear separations are reported. The following values and uncertainties
were determined : C_6 = 214(3) for Be, 627(12) for Mg, 2221(15) for Ca,
3170(196) for Sr, and 5160(74) for Ba in atomic units.Comment: 5 pages, submitted to Phys. Rev.
Coupling between magnon and ligand-field excitations in magnetoelectric Tb3Fe5O12 garnet
The spectra of far-infrared transmission in Tb3Fe5O12 magnetoelectric single
crystals have been studied in the range between 15 and 100 cm-1, in magnetic
fields up to 10 T, and for temperatures between 5 and 150 K. We attribute some
of the observed infrared-active excitations to electric-dipole transitions
between ligand-field split states of Tb3+ ions. Anticrossing between the
magnetic exchange excitation and the ligand-field transition occurs at the
temperature between 60 and 80 K. The corresponding coupling energy for this
interaction is 6 cm-1. Temperature-induced softening of the hybrid IR
excitation correlates with the increase of the static dielectric constant. We
discuss the possibility for hybrid excitations of magnons and ligand-field
states and their possible connection to the magnetoelectric effect in
Tb3Fe5O12.Comment: submitted to Phys. Rev. B on May 15th, 201
Mass Determination in SUSY-like Events with Missing Energy
We describe a kinematic method which is capable of determining the overall
mass scale in SUSY-like events at a hadron collider with two missing (dark
matter) particles. We focus on the kinematic topology in which a pair of
identical particles is produced with each decaying to two leptons and an
invisible particle (schematically, followed by each
decaying via where is invisible). This topology
arises in many SUSY processes such as squark and gluino production and decay,
not to mention t\anti t di-lepton decays. In the example where the final
state leptons are all muons, our errors on the masses of the particles ,
and in the decay chain range from 4 GeV for 2000 events after cuts to 13
GeV for 400 events after cuts. Errors for mass differences are much smaller.
Our ability to determine masses comes from considering all the kinematic
information in the event, including the missing momentum, in conjunction with
the quadratic constraints that arise from the , and mass-shell
conditions. Realistic missing momentum and lepton momenta uncertainties are
included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion
included in revised version that conforms to the version to be publishe
Running Spectral Index and Formation of Primordial Black Hole in Single Field Inflation Models
A broad range of single field models of inflation are analyzed in light of
all relevant recent cosmological data, checking whether they can lead to the
formation of long-lived Primordial Black Holes (PBHs). To that end we calculate
the spectral index of the power spectrum of primordial perturbations as well as
its first and second derivatives. PBH formation is possible only if the
spectral index increases significantly at small scales, i.e. large wave number
. Since current data indicate that the first derivative of the
spectral index is negative at the pivot scale , PBH formation
is only possible in the presence of a sizable and positive second derivative
("running of the running") . Among the three small-field and five
large-field models we analyze, only one small-field model, the "running mass"
model, allows PBH formation, for a narrow range of parameters. We also note
that none of the models we analyze can accord for a large and negative value of
, which is weakly preferred by current data.Comment: 26 pages, 5 figures, Refs. added, Minor textual change; version to
appear in JCA
- …
