2,481 research outputs found

    Development of the German A-4 guidance and control system, 1939 - 1945: A memoir

    Get PDF
    The development by 1943 of a fully inertial navigational system for the German A-4 (V-2) missile is detailed. This flight control system used a triple-axis stabilized platform with two longitudinal accelerometers and one lateral accelerometer

    Importance of the use of extraterrestrial resources to the economy of space flight beyond near-earth orbit

    Get PDF
    Importance of use of extraterrestrial resources to economy of space flight beyond near earth orbi

    Fourth post-Newtonian effective-one-body Hamiltonians with generic spins

    No full text
    In a compact binary coalescence, the spins of the compact objects can have a significant effect on the orbital motion and gravitational-wave (GW) emission. For generic spin orientations, the orbital plane precesses, leading to characteristic modulations of the GW signal. The observation of precession effects is crucial to discriminate among different binary formation scenarios, and to carry out precise tests of General Relativity. Here, we work toward an improved description of spin effects in binary inspirals, within the effective-one-body (EOB) formalism, which is commonly used to build waveform models for LIGO and Virgo data analysis. We derive EOB Hamiltonians including the complete fourth post-Newtonian (4PN) conservative dynamics, which is the current state of the art. We place no restrictions on the spin orientations or magnitudes, or on the type of compact object (e.g., black hole or neutron star), and we produce the first generic-spin EOB Hamiltonians complete at 4PN order. We consider multiple spinning EOB Hamiltonians, which are more or less direct extensions of the varieties found in previous literature, and we suggest another simplified variant. Finally, we compare the circular-orbit, aligned-spin binding-energy functions derived from the EOB Hamiltonians to numerical-relativity simulations of the late inspiral. While finding that all proposed Hamiltonians perform reasonably well, we point out some interesting differences, which could guide the selection of a simpler, and thus faster-to-evolve EOB Hamiltonian to be used in future LIGO and Virgo inference studies

    Reduced Hamiltonian for next-to-leading order Spin-Squared Dynamics of General Compact Binaries

    Full text link
    Within the post Newtonian framework the fully reduced Hamiltonian (i.e., with eliminated spin supplementary condition) for the next-to-leading order spin-squared dynamics of general compact binaries is presented. The Hamiltonian is applicable to the spin dynamics of all kinds of binaries with self-gravitating components like black holes and/or neutron stars taking into account spin-induced quadrupolar deformation effects in second post-Newtonian order perturbation theory of Einstein's field equations. The corresponding equations of motion for spin, position and momentum variables are given in terms of canonical Poisson brackets. Comparison with a nonreduced potential calculated within the Effective Field Theory approach is made.Comment: 11 pages, minor changes to match published version at CQ

    Non-Relativistic Gravitation: From Newton to Einstein and Back

    Full text link
    We present an improvement to the Classical Effective Theory approach to the non-relativistic or Post-Newtonian approximation of General Relativity. The "potential metric field" is decomposed through a temporal Kaluza-Klein ansatz into three NRG-fields: a scalar identified with the Newtonian potential, a 3-vector corresponding to the gravito-magnetic vector potential and a 3-tensor. The derivation of the Einstein-Infeld-Hoffmann Lagrangian simplifies such that each term corresponds to a single Feynman diagram providing a clear physical interpretation. Spin interactions are dominated by the exchange of the gravito-magnetic field. Leading correction diagrams corresponding to the 3PN correction to the spin-spin interaction and the 2.5PN correction to the spin-orbit interaction are presented.Comment: 10 pages, 3 figures. v2: published version. v3: Added a computation of Einstein-Infeld-Hoffmann in higher dimensions within our improved ClEFT which partially confirms and partially corrects a previous computation. See notes added at end of introductio

    Canonical formulation of self-gravitating spinning-object systems

    Full text link
    Based on the Arnowitt-Deser-Misner (ADM) canonical formulation of general relativity, a canonical formulation of gravitationally interacting classical spinning-object systems is given to linear order in spin. The constructed position, linear momentum and spin variables fulfill standard Poisson bracket relations. A spatially symmetric time gauge for the tetrad field is introduced. The achieved formulation is of fully reduced form without unresolved constraints, supplementary, gauge, or coordinate conditions. The canonical field momentum is not related to the extrinsic curvature of spacelike hypersurfaces in standard ADM form. A new reduction of the tetrad degrees of freedom to the Einstein form of the metric field is suggested.Comment: 6 pages. v2: extended version; identical to the published one. v3: corrected misprints in (24) and (39); improved notation; added note regarding a further reference

    On the comparison of results regarding the post-Newtonian approximate treatment of the dynamics of extended spinning compact binaries

    Get PDF
    A brief review is given of all the Hamiltonians and effective potentials calculated hitherto covering the post-Newtonian (pN) dynamics of a two body system. A method is presented to compare (conservative) reduced Hamiltonians with nonreduced potentials directly at least up to the next-to-leading-pN order.Comment: Conference proceedings for the 7th International Conference on Gravitation and Cosmology (ICGC2011), 4 page

    Next-to-leading order spin-orbit and spin(a)-spin(b) Hamiltonians for n gravitating spinning compact objects

    Full text link
    We derive the post-Newtonian next-to-leading order conservative spin-orbit and spin(a)-spin(b) gravitational interaction Hamiltonians for arbitrary many compact objects. The spin-orbit Hamiltonian completes the knowledge of Hamiltonians up to and including 2.5PN for the general relativistic three-body problem. The new Hamiltonians include highly nontrivial three-body interactions, in contrast to the leading order consisting of two-body interactions only. This may be important for the study of effects like Kozai resonances in mergers of black holes with binary black holes.Comment: 13 pages, 1 Mathematica source file, v2: submitted version, v3: published version, some minor correction

    Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Get PDF
    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors

    Hamiltonian of a spinning test-particle in curved spacetime

    Full text link
    Using a Legendre transformation, we compute the unconstrained Hamiltonian of a spinning test-particle in a curved spacetime at linear order in the particle spin. The equations of motion of this unconstrained Hamiltonian coincide with the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac brackets to derive the constrained Hamiltonian and the corresponding phase-space algebra in the Newton-Wigner spin supplementary condition (SSC), suitably generalized to curved spacetime, and find that the phase-space algebra (q,p,S) is canonical at linear order in the particle spin. We provide explicit expressions for this Hamiltonian in a spherically symmetric spacetime, both in isotropic and spherical coordinates, and in the Kerr spacetime in Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when expanded in Post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner (ADM) canonical Hamiltonian computed in PN theory in the test-particle limit. Notably, we recover the known spin-orbit couplings through 2.5PN order and the spin-spin couplings of type S_Kerr S (and S_Kerr^2) through 3PN order, S_Kerr being the spin of the Kerr spacetime. Our method allows one to compute the PN Hamiltonian at any order, in the test-particle limit and at linear order in the particle spin. As an application we compute it at 3.5PN order.Comment: Corrected typo in the ADM Hamiltonian at 3.5 PN order (eq. 6.20
    corecore