5,075 research outputs found
High-throughput in-situ characterization and modelling of precipitation kinetics in compositionally graded alloys
The development of new engineering alloy chemistries is a time consuming and
iterative process. A necessary step is characterization of the
nano/microstructure to provide a link between the processing and properties of
each alloy chemistry considered. One approach to accelerate the identification
of optimal chemistries is to use samples containing a gradient in composition,
ie. combinatorial samples, and to investigate many different chemistries at the
same time. However, for engineering alloys, the final properties depend not
only on chemistry but also on the path of microstructure development which
necessitates characterization of microstructure evolution for each chemistry.
In this contribution we demonstrate an approach that allows for the in-situ,
nanoscale characterization of the precipitate structures in alloys, as a
function of aging time, in combinatorial samples containing a composition
gradient. The approach uses small angle x-ray scattering (SAXS) at a
synchrotron beamline. The Cu-Co system is used for the proof-of-concept and the
combinatorial samples prepared contain a gradient in Co from 0% to 2%. These
samples are aged at temperatures between 450{\textdegree}C and
550{\textdegree}C and the precipitate structures (precipitate size, volume
fraction and number density) all along the composition gradient are
simultaneously monitored as a function of time. This large dataset is used to
test the applicability and robustness of a conventional class model for
precipitation that considers concurrent nucleation, growth and coarsening and
the ability of the model to describe such a large dataset.Comment: Published in Acta Materiali
An optimal control approach to cell tracking
Cell tracking is of vital importance in many biological studies, hence robust cell tracking algorithms are needed for inference of dynamic features from (static) in vivo and in vitro experimental imaging data of cells migrating.
In recent years much attention has been focused on the modelling of cell motility from physical principles and the development of state-of-the art numerical methods for the simulation of the model equations. Despite this, the vast majority of cell tracking algorithms proposed to date focus solely on the imaging data itself and do not attempt to incorporate any physical knowledge on cell migration into the tracking procedure.
In this study, we present a mathematical approach for cell tracking, in which we formulate the cell tracking problem as an inverse problem for fitting a mathematical model for cell motility to experimental imaging data. The novelty of this approach is that the physics underlying the model for cell migration is encoded in the tracking algorithm. To illustrate this we focus on an example of Zebrafish (Danio rerio's larvae) Neutrophil migration and contrast an ad-hoc approach to cell tracking based on interpolation with the model fitting approach we propose in this study
Can Power from Space Compete?
Satellite solar power (SSP) has been suggested as an alternative to terrestrial energy resources for electricity generation. In this study, we consider the market for electricity from the present to 2020, roughly the year when many experts expect SSP to be technically achievable. We identify several key challenges for SSP in competing with conventional electricity generation in developed and developing countries, discuss the role of market and economic analysis as technical development of SSP continues during the coming years, and suggest future research directions to improve understanding of the potential economic viability of SSP.
Multispin correlations and pseudo-thermalization of the transient density matrix in solid-state NMR: free induction decay and magic echo
Quantum unitary evolution typically leads to thermalization of generic
interacting many-body systems. There are very few known general methods for
reversing this process, and we focus on the magic echo, a radio-frequency pulse
sequence known to approximately "rewind" the time evolution of dipolar coupled
homonuclear spin systems in a large magnetic field. By combining analytic,
numerical, and experimental results we systematically investigate factors
leading to the degradation of magic echoes, as observed in reduced revival of
mean transverse magnetization. Going beyond the conventional analysis based on
mean magnetization we use a phase encoding technique to measure the growth of
spin correlations in the density matrix at different points in time following
magic echoes of varied durations and compare the results to those obtained
during a free induction decay (FID). While considerable differences are
documented at short times, the long-time behavior of the density matrix appears
to be remarkably universal among the types of initial states considered -
simple low order multispin correlations are observed to decay exponentially at
the same rate, seeding the onset of increasingly complex high order
correlations. This manifestly athermal process is constrained by conservation
of the second moment of the spectrum of the density matrix and proceeds
indefinitely, assuming unitary dynamics.Comment: 12 Pages, 9 figure
Geodynamic setting and origin of the Oman/UAE ophiolite
The ~500km-long mid-Cretaceous Semail nappe of the Sultanate of Oman and UAE (henceforth referred to as the Oman ophiolite) is the largest and best-preserved ophiolite complex known. It is of particular importance because it is generally believed to have an internal structure and composition closely comparable to that of crust formed at the present-day East Pacific Rise (EPR), making it our only known on-land analogue for ocean lithosphere formed at a fast spreading rate. On the basis of this assumption Oman has long played a pivotal role in guiding our conceptual understanding of fast-spreading ridge processes, as modern fast-spread ocean crust is largely inaccessible
A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport
Using basic thermodynamical principles we derive a Cahn--Hilliard--Darcy model for tumour growth including nutrient diffusion, chemotaxis, active transport, adhesion, apoptosis and proliferation. The model generalise earlier models and in particular include active transport mechanisms which ensures thermodynamical consistency. We perform a formally matched asymptotic expansion and develop several sharp interface models. Some of them are classical and some new ones which for example include a jump in the nutrient density at the interface. A linear stability analysis for a growing nucleus is performed and in particular the role of the new active transport term is analysed. Numerical computations are performed to study the influence of the active transport term for specific growth scenarios
Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O2 from a 300-m tall tower in central Siberia
We present first results from 19 months of semicontinuous concentration measurements of biogeochemical trace gases (CO2, CO, and CH4) and O2, measured at the Zotino Tall Tower Observatory (ZOTTO) in the boreal forest of central Siberia. We estimated CO2 and O2 seasonal cycle amplitudes of 26.6 ppm and 134 per meg, respectively. An observed west-east gradient of about -7 ppm (in July 2006) between Shetland Islands, Scotland, and ZOTTO reflects summertime continental uptake of CO2 and is consistent with regional modeling studies. We found the oceanic component of the O2 seasonal amplitude (Atmospheric Potential Oxygen, or APO) to be 51 per meg, significantly smaller than the 95 per meg observed at Shetlands, illustrating a strong attenuation of the oceanic O2 signal in the continental interior. Comparison with the Tracer Model 3 (TM3) atmospheric transport model showed good agreement with the observed phasing and seasonal amplitude in CO2; however, the model exhibited greater O2 (43 per meg, 32%) and smaller APO (9 per meg, 18%) amplitudes. This seeming inconsistency in model comparisons between O2 and APO appears to be the result of phasing differences in land and ocean signals observed at ZOTTO, where ocean signals have a significant lag. In the first 2 months of measurements on the fully constructed tower (November and December 2006), we observed several events with clear vertical concentration gradients in all measured species except CO. During “cold events” (below -30°C) in November 2006, we observed large vertical gradients in CO2 (up to 22 ppm), suggesting a strong local source. The same pattern was observed in CH4 concentrations for the same events. Diurnal vertical CO2 gradients in April to May 2007 gave estimates for average nighttime respiration fluxes of 0.04 ± 0.02 mol C m-2 d-1, consistent with earlier eddy covariance measurements in 1999–2000 in the vicinity of the tower
UK export performance research - review and implications
Previous research on export performance has been criticized for being a mosaic of autonomous endeavours and for a lack of theoretical development. Building upon extant models of export performance, and a review and analysis of research on export performance in the UK for the period 1990-2005, an integrated model of export performance is developed and theoretical explanations of export performance are put forward. It is suggested that a multi-theory approach to explaining export performance is viable. Management and policy implications for the UK emerging from the review and synthesis of the literature and the integrated model are discussed
- …
