797 research outputs found
Crystallization and preliminary crystallographic analysis of the DNA gyrase B protein from B-stearothermophilus
DNA gyrase B (GyrB) from B. stearothermophilus has been crystallized in the presence of the non-hydrolyzable ATP analogue, 5'-adenylpl-beta-gamma-imidodiphosphate (ADPNP), by the dialysis method. A complete native data set to 3.7 Angstrom has been collected from crystals which belonged to the cubic space group I23 with unit-cell dimension a = 250.6 Angstrom. Self-rotation function analysis indicates the position of a molecular twofold axis. Low-resolution data sets of a thimerosal and a selenomethionine derivative have also been analysed. The heavy-atom positions are consistent with one dimer in the asymmetric unit
A Report on the Preliminary design of Composite Cocured LCA Fin
A report on the preliminary design of composite cocured LCA fin is presented. A six spar structural configuration involving laminated carbon composite construction is employed in the design of torsion box. The design studies are carried out using a strength of materials based analysis. Three critical loading cases have been considered in the investigation. Results for various cases studied are presented and discussed
Microrheology of non mulberry silk varieties by optical tweezer and video microscopy based techniqueas
We have carried out a comparative study of the microrheol. properties of silk fibroin solns. formed from a variety of silks indigenous to the Indian subcontinent. We present the measured viscoelastic moduli of Tasar silk fibroin soln. using both a single and dual optical tweezer at 0.16% and 0.25% (w/v). The bandwidth of the measurements carried out using optical tweezers is extended down to the lower frequency regime by a video microscopy measurement. Further, we have measured the viscoelastic moduli of Eri and Muga varieties of silk fibroin solns. at a higher concn. (1.00% w/v) limiting the tool of measurement to video microscopy, as the reduced optical transparencies of these solns. at higher concn. preclude an optical tweezer based investigation. The choice of a higher concn. of fibroin soln. of the latter silk varieties is so as to enable a comparison of the shear moduli obtained from optical methods with their corresponding fiber stiffness obtained from wide angle X-ray scattering data. We report a correlation between the microstructure and microrheol. parameters of these silk varieties for the concn. of fibroin solns. studied
Geometric multiaxial representation of N-qubit mixed symmetric separable states
Study of an N qubit mixed symmetric separable states is a long standing challenging problem as there exist no unique separability criterion. In this regard, we take up the N-qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer elegant mathematical analysis since the dimension of the Hilbert space reduces from 2N to N + 1. Since there exists a one to one correspondence between spin-j system and an N-qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of spin density matrix. Further, we use geometric multiaxial representation (MAR) of density matrix to characterize the mixed symmetric separable states. Since separability problem is NP hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P-distribution function λ (ᶿ, Φ) We show that the N-qubit mixed symmetric separable state can be visualized as a uniaxial system if the distribution function is independent of ᶿ, and Φ. We further choose distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N-qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two qubit mixed symmetric separable state. We also observe that there exists a correspondence between separability and classicality of states
Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization
We present a graph-based variational algorithm for classification of
high-dimensional data, generalizing the binary diffuse interface model to the
case of multiple classes. Motivated by total variation techniques, the method
involves minimizing an energy functional made up of three terms. The first two
terms promote a stepwise continuous classification function with sharp
transitions between classes, while preserving symmetry among the class labels.
The third term is a data fidelity term, allowing us to incorporate prior
information into the model in a semi-supervised framework. The performance of
the algorithm on synthetic data, as well as on the COIL and MNIST benchmark
datasets, is competitive with state-of-the-art graph-based multiclass
segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science
volume "Pattern Recognition Applications and Methods 2013", part of series on
Advances in Intelligent and Soft Computin
Magnetic stress as a driving force of structural distortions: the case of CrN
We show that the observed transition from rocksalt to orthorhombic P
symmetry in CrN can be understood in terms of stress anisotropy. Using local
spin density functional theory, we find that the imbalance between stress
stored in spin-paired and spin-unpaired Cr nearest neighbors causes the
rocksalt structure to be unstable against distortions and justifies the
observed antiferromagnetic ordering. This stress has a purely magnetic origin,
and may be important in any system where the coupling between spin ordering and
structure is strong.Comment: 4 pages (two columns) 4 figure
Competition between Magnetic and Structural Transition in CrN
CrN is observed to undergo a paramagnetic to antiferromagnetic transition
accompanied by a shear distortion from cubic NaCl-type to orthorhombic
structure. Our first-principle plane wave and ultrasoft pseudopotential
calculations confirm that the distorted antiferromagnetic phase with spin
configuration arranged in double ferromagnetic sheets along [110] is the most
stable. Antiferromagnetic ordering leads to a large depletion of states around
Fermi level, but it does not open a gap. Simultaneous occurence of structural
distortion and antiferromagnetic order is analyzed.Comment: 10 pages, 10 figure
Identification and characterization of the dif Site from Bacillus subtilis
Bacteria with circular chromosomes have evolved systems that ensure multimeric chromosomes, formed by homologous recombination between sister chromosomes during DNA replication, are resolved to monomers prior to cell division. The chromosome dimer resolution process in Escherichia coli is mediated by two tyrosine family site-specific recombinases, XerC and XerD, and requires septal localization of the division protein FtsK. The Xer recombinases act near the terminus of chromosome replication at a site known as dif (Ecdif). In Bacillus subtilis the RipX and CodV site-specific recombinases have been implicated in an analogous reaction. We present here genetic and biochemical evidence that a 28-bp sequence of DNA (Bsdif), lying 6° counterclockwise from the B. subtilis terminus of replication (172°), is the site at which RipX and CodV catalyze site-specific recombination reactions required for normal chromosome partitioning. Bsdif in vivo recombination did not require the B. subtilis FtsK homologues, SpoIIIE and YtpT. We also show that the presence or absence of the B. subtilis SPβ-bacteriophage, and in particular its yopP gene product, appears to strongly modulate the extent of the partitioning defects seen in codV strains and, to a lesser extent, those seen in ripX and dif strains
Uncertainty quantification in graph-based classification of high dimensional data
Classification of high dimensional data finds wide-ranging applications. In
many of these applications equipping the resulting classification with a
measure of uncertainty may be as important as the classification itself. In
this paper we introduce, develop algorithms for, and investigate the properties
of, a variety of Bayesian models for the task of binary classification; via the
posterior distribution on the classification labels, these methods
automatically give measures of uncertainty. The methods are all based around
the graph formulation of semi-supervised learning.
We provide a unified framework which brings together a variety of methods
which have been introduced in different communities within the mathematical
sciences. We study probit classification in the graph-based setting, generalize
the level-set method for Bayesian inverse problems to the classification
setting, and generalize the Ginzburg-Landau optimization-based classifier to a
Bayesian setting; we also show that the probit and level set approaches are
natural relaxations of the harmonic function approach introduced in [Zhu et al
2003].
We introduce efficient numerical methods, suited to large data-sets, for both
MCMC-based sampling as well as gradient-based MAP estimation. Through numerical
experiments we study classification accuracy and uncertainty quantification for
our models; these experiments showcase a suite of datasets commonly used to
evaluate graph-based semi-supervised learning algorithms.Comment: 33 pages, 14 figure
Induction of smectic C phase in binary mixtures of compounds with cyano end groups
We have studied binary mixtures of 4-cyanophenyl-3'-methyl-4'(4"-n-dodecylbenzoyloxy)benzoate (12 CPMBB) and 4-n-dodecylphenyl-3'-methyl-4'(4"-cyanobenzoy1oxy)benzoate (12 PMCBB). The former compound exhibits nematic, smectic A and reentrant nematic phases and the latter one nematic and smectic A phases with a possible AdA2, transition. Over a fairly wide composition range, the mixtures exhibit an induced smectic C phase on cooling the sample from the A phase. The phase diagram, and the temperature variations of the layer spacings for some specific compositions are reported. The possible origin of the C phase is also discussed
- …
