3,767 research outputs found
Can a gravitational wave and a magnetic monopole coexist?
We investigate the behavior of small perturbations around the Kaluza-Klein
monopole in the five dimensional space-time. We find that the even parity
gravitational wave does not propagate in the five dimensional space-time with
Kaluza-Klein monopole provided that the gravitational wave is constant in the
fifth direction. We conclude that a gravitational wave and a U(1) magnetic
monopole do not coexist in five dimensional Kaluza-Klein spacetime.Comment: 10 pages, LaTeX. To appear in Modern Physics Letters
Propulsion system tests on a full scale Centaur vehicle to investigate 3-burn mission capability of the D-lT configuration
Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight
Tests of a proximity focusing RICH with aerogel as radiator
Using aerogel as radiator and multianode PMTs for photon detection, a
proximity focusing Cherenkov ring imaging detector has been constructed and
tested in the KEK 2 beam. The aim is to experimentally study the basic
parameters such as resolution of the single photon Cherenkov angle and number
of detected photons per ring. The resolution obtained is well approximated by
estimates of contributions from pixel size and emission point uncertainty. The
number of detected photons per Cherenkov ring is in good agreement with
estimates based on aerogel and detector characteristics. The values obtained
turn out to be rather low, mainly due to Rayleigh scattering and to the
relatively large dead space between the photocathodes. A light collection
system or a higher fraction of the photomultiplier active area, together with
better quality aerogels are expected to improve the situation. The reduction of
Cherenkov yield, for charged particle impact in the vicinity of the aerogel
tile side wall, has also been measured.Comment: 4 pages, 8 figure
Planar CuO_2 hole density estimation in multilayered high-T_c cuprates
We report that planar CuO_2 hole densities in high-T_c cuprates are
consistently determined by the Cu-NMR Knight shift. In single- and bi-layered
cuprates, it is demonstrated that the spin part of the Knight shift K_s(300 K)
at room temperature monotonically increases with the hole density from
underdoped to overdoped regions, suggesting that the relationship of K_s(300 K)
vs. p is a reliable measure to determine p. The validity of this K_s(300 K)-p
relationship is confirmed by the investigation of the p-dependencies of
hyperfine magnetic fields and of spin susceptibility for single- and bi-layered
cuprates with tetragonal symmetry. Moreover, the analyses are compared with the
NMR data on three-layered Ba_2Ca_2Cu_3O_6(F,O)_2, HgBa_2Ca_2Cu_3O_{8+delta},
and five-layered HgBa_2Ca_4Cu_5O_{12+delta}, which suggests the general
applicability of the K_s(300 K)-p relationship to multilayered compounds with
more than three CuO_2 planes. We remark that the measurement of K_s(300 K)
enables us to separately estimate p for each CuO_2 plane in multilayered
compounds, where doped hole carriers are inequivalent between outer CuO_2
planes and inner CuO_2 planes.Comment: 7 pages, 5 figures, 2 Tables, to be published in Physical Review
Non-Fermi-Liquid Scaling in Ce(Ru_{0.5}Rh_{0.5})_2Si_2
We study the temperature and field dependence of the magnetic and transport
properties of the non-Fermi-liquid compound Ce(Ru_{1-x}Rh_x)_2Si_2 at x=0.5.
For fields 0.1T the experimental results show signatures of the
presence of Kondo-disorder, expected to be large at this concentration. For
larger fields, however, magnetic and transport properties are controlled by the
coupling of the conduction electrons to critical spin-fluctuations. The
temperature dependence of the susceptibility as well as the scaling properties
of the magnetoresistance are in very good agreement with the predictions of
recent dynamical mean-field theories of Kondo alloys close to a spin-glass
quantum critical point.Comment: 4 pages, 4 figures. Improved discussion. To appear in Phys. Rev. Let
Dynamic susceptibility of a spin ice near the critical point
We consider spin ice magnets (primarily, ) in the
vicinity of their critical point on the plane. We find that the
longitudinal susceptibility diverges at the critical point, leading to the
behaviour qualitatively similar to the one which would result from non-zero
conductance of magnetic charges. We show that dynamics of critical fluctuations
belongs to the universality class of easy-axis ferroelectric and calculate
logarithmic corrections (within two-loop approximation) to the mean-field
critical behavior.Comment: 5 pages, 3 figures. Some misprints are corrected, among them are the
formula (20) and the estimation for $\Gamma_c
Photoemission and x-ray absorption studies of valence states in (Ni,Zn,Fe,Ti)O thin films exhibiting photo-induced magnetization
By means of photoemission and x-ray absorption spectroscopy, we have studied
the electronic structure of (Ni,Zn,Fe,Ti)O thin films, which
exhibits a cluster glass behavior with a spin-freezing temperature of
K and photo-induced magnetization (PIM) below . The Ni and Zn
ions were found to be in the divalent states. Most of the Fe and Ti ions in the
thin films were trivalent (Fe) and tetravalent (Ti),
respectively. While Ti doping did not affect the valence states of the Ni and
Zn ions, a small amount of Fe ions increased with Ti concentration,
consistent with the proposed charge-transfer mechanism of PIM.Comment: 4 pages, 4 figure
Further analysis of the quantum critical point of CeLaRuSi
New data on the spin dynamics and the magnetic order of
CeLaRuSi are presented. The importance of the Kondo
effect at the quantum critical point of this system is emphasized from the
behaviour of the relaxation rate at high temperature and from the variation of
the ordered moment with respect to the one of the N\'eel temperature for
various .Comment: Contribution for the Festschrift on the occasion of Hilbert von
Loehneysen 60 th birthday. To be published as a special issue in the Journal
of Low Temperature Physic
- …
