313 research outputs found
Vitamin C inhibits endothelial cell apoptosis in congestive heart failure
Background - Proinflammatory cytokines like tumor necrosis factor- and oxidative stress induce apoptotic cell death in endothelial cells (ECs). Systemic inflammation and increased oxidative stress in congestive heart failure (CHF) coincide with enhanced EC apoptosis and the development of endothelial dysfunction. Therefore, we investigated the effects of antioxidative vitamin C therapy on EC apoptosis in CHF patients. Methods and Results - Vitamin C dose dependently suppressed the induction of EC apoptosis by tumor necrosis factor- and angiotensin II in vitro as assessed by DNA fragmentation, DAPI nuclear staining, and MTT viability assay. The antiapoptotic effect of vitamin C was associated with reduced cytochrome C release from mitochondria and the inhibition of caspase-9 activity. To assess EC protection by vitamin C in CHF patients, we prospectively randomized CHF patients in a double-blind trial to vitamin C treatment versus placebo. Vitamin C administration to CHF patients markedly reduced plasma levels of circulating apoptotic microparticles to 32±8% of baseline levels, whereas placebo had no effect (87±14%, P<0.005). In addition, vitamin C administration suppressed the proapoptotic activity on EC of the serum of CHF patients (P<0.001). Conclusions - Administration of vitamin C to CHF patients suppresses EC apoptosis in vivo, which might contribute to the established functional benefit of vitamin C supplementation on endothelial function
MASP-1 Induces a Unique Cytokine Pattern in Endothelial Cells: A Novel Link between Complement System and Neutrophil Granulocytes
Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca(2+)-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms
Modelling chemistry and biology after implantation of a drug-eluting stent. Part I: Drug transport
Drug-eluting stents have been used widely to prevent restenosis of arteries following percutaneous balloon angioplasty. Mathematical modelling plays an important role in optimising the design of these stents to maximise their efficiency. When designing a drug-eluting stent system, we expect to have a sufficient amount of drug being released into the artery wall for a sufficient period to prevent restenosis. In this paper, a simple model is considered to provide an elementary description of drug release into artery tissue from an implanted stent. From the model, we identified a parameter regime to optimise the system when preparing the polymer coating. The model provides some useful order of magnitude estimates for the key quantities of interest. From the model, we can identify the time scales over which the drug traverses the artery wall and empties from the polymer coating, as well as obtain approximate formulae for the total amount of drug in the artery tissue and the fraction of drug that has released from the polymer. The model was evaluated by comparing to in-vivo experimental data and good agreement was found
Role of Microvascular Tone and Extracellular Matrix Contraction in the Regulation of Interstitial FluidHighlights
The pathophysiology of aortic dissection is poorly understood, and its risk is resistant to medical treatment. Most studies have focused on a proposed pathogenic role of transforming growth factor-β in Marfan disease and related thoracic aortic aneurysms and aortic dissections. However, clinical testing of this concept using angiotensin II type 1 receptor antagonists to block transforming growth factor-β signaling fell short of promise. Genetic mutations that predispose to thoracic aortic aneurysms and aortic dissections affect components of the extracellular matrix and proteins involved in cellular force generation. Thus, a role for dysfunctional mechanosensing in abnormal aortic wall remodeling is emerging. However, how abnormal mechanosensing leads to aortic dissection remains a mystery. Here, we review current knowledge about the regulation of interstitial fluid dynamics and myogenic tone and propose that alteration in contractile force reduces vascular tone in the microcirculation (here, aortic vasa vasorum) and leads to elevations of blood flow, transmural pressure, and fluid flux into the surrounding aortic media. Furthermore, reduced contractile force in medial smooth muscle cells coupled with alteration of structural components of the extracellular matrix limits extracellular matrix contraction, further promoting the formation of intramural edema, a critical step in the initiation of aortic dissection. The concept is supported by several pathophysiological and clinical observations. A direct implication of this concept is that drugs that lower blood pressure and limit interstitial fluid accumulation while preserving or increasing microvascular tone would limit the risk of dissection. In contrast, drugs that substantially lower microvascular tone would be ineffective or may accelerate the disease and precipitate aortic dissection
Brachial artery pulse pressure and common carotid artery diameter: mutually independent associations with mortality in subjects with a recent history of impaired glucose tolerance
BACKGROUND: Decreased large artery function, as reflected by increased brachial artery pulse pressure and increased carotid artery diameter and stiffness, may contribute to the increased mortality risk that is observed in subjects with impaired glucose tolerance. We therefore investigated the association between brachial artery pulse pressure and carotid artery diameter and stiffness, which are estimates of central artery stiffness and arterial remodelling, respectively, and mortality in subjects with a recent history of impaired glucose tolerance. DESIGN: A prospective, population-based cohort study. We measured brachial artery pulse pressure by oscillometric blood pressure measurements, and common carotid artery diameter and distensibility and compliance coefficients by ultrasound in 140 subjects with a recent history of impaired glucose tolerance. During a median 6.6-year follow-up, 16 subjects died. RESULTS: Brachial artery pulse pressure and common carotid artery diameter were positively related to all-cause mortality [hazard ratios per standard deviation, 1.7 (1.2-2.5) and 2.1 (1.3-3.3), respectively]. Results were similar after adjustment for gender, age, waist-to-hip ratio, body mass index, total cholesterol concentration, pre-existent cardiovascular disease, and hypertension, and after additional mutual adjustment. Common carotid artery distensibility and compliance coefficients were not statistically significantly associated with mortality. CONCLUSIONS: Among subjects with a recent history of impaired glucose tolerance, brachial artery pulse pressure and common carotid artery diameter are independently associated with mortality risk. Stiffness of the central arteries may explain the association between pulse pressure and mortality risk. The association between carotid diameter and mortality risk is more likely to reflect arterial remodelling in response to atherosclerosis than that in response to increased local stiffness
Functional characteristics of calcitonin gene-related peptide receptors in human Ewing's sarcoma WE-68 cells
AbstractCalcitonin gene-related peptide (CGRP) receptor activity was studied in WE-68 human Ewing's sarcoma cells. 125I-human CGRP bound in a time-dependent, reversible and saturable manner. Scatchard plots were compatible with the presence of a homogenous population of CGRP receptors with high affinity (Kd = 15 pM, and Bmax = 1.9 fmolmg protein). The potency order of unlabeled peptides, in the presence of radioligand, was: human CGRP-II > human CGRP = chick CGRP > rat CGRP = rat [Tyro]CGRP > human [Tyro] CGRP > > salmon calcitonin (CT) > rat [Tyro]CGRP-(28-37). Each peptide except CT and [Tyio]CGRP-(28-37) stimulated cyclic AMP generation in a concentration-dependent manner, and the relative potencies paralleled their relative ability in inhibiting 125I-human CGRP binding. We conclude that WE-68 Ewing's sarcoma cells express genuine CGRP receptors which upon activation lead to stimulation of cyclic AMP formation.Calcitonin gene-related peptide; Calcitonin; cyclic AMP; (Human; Ewing's sarcoma cell
Pleiotropic Effects of Atorvastatin and Fenofibrate in Metabolic Syndrome and Different Types of Pre-Diabetes
Inflammatory Markers and Outcomes in Cardiovascular Disease
In a commentary on two new research studies in PLoS Medicine, Leonard Kritharides discusses the role of inflammatory markers in predicting cardiovascular outcomes and patients' responses to treatment
Increased Vitreous Shedding of Microparticles in Proliferative Diabetic Retinopathy Stimulates Endothelial Proliferation
- …
