3,626 research outputs found
Unplugging the Universe: the neglected electromagnetic consequence of decoupling
This letter concentrates on the non-equilibrium evolution of magnetic field
structures at the onset of recombination, when the charged particle current
densities decay as neutrals are formed.
We consider the effect that a decaying magnetic flux has on the acceleration
of particles via the transient induced electric field. Since the residual
charged-particle number density is small as a result of decoupling, we shall
consider the magnetic and electric fields essentially to be imposed, neglecting
the feedback from any minority accelerated population.
We find that the electromagnetic treatment of this phase transition can
produce energetic electrons scattered throughout the Universe. Such particles
could have a significant effect on cosmic evolution in several ways: (i) their
presence could delay the effective end of the recombination era; (ii) they
could give rise to plasma concentrations that could enhance early gravitational
collapse of matter by opposing cosmic expansion to a greater degree than
neutral matter could; (iii) they could continue to be accelerated, and become
the seed for reionisation at the later epoch .Comment: 4 pages, no figure
Scene-adapted plug-and-play algorithm with convergence guarantees
Recent frameworks, such as the so-called plug-and-play, allow us to leverage
the developments in image denoising to tackle other, and more involved,
problems in image processing. As the name suggests, state-of-the-art denoisers
are plugged into an iterative algorithm that alternates between a denoising
step and the inversion of the observation operator. While these tools offer
flexibility, the convergence of the resulting algorithm may be difficult to
analyse. In this paper, we plug a state-of-the-art denoiser, based on a
Gaussian mixture model, in the iterations of an alternating direction method of
multipliers and prove the algorithm is guaranteed to converge. Moreover, we
build upon the concept of scene-adapted priors where we learn a model targeted
to a specific scene being imaged, and apply the proposed method to address the
hyperspectral sharpening problem
A Cautionary Note on Cosmological Magnetic Fields
This note is concerned with potentially misleading concepts in the treatment
of cosmological magnetic fields by magnetohydrodynamical (MHD) modelling. It is
not a criticism of MHD itself but rather a cautionary comment on the validity
of its use in cosmology. Now that cosmological data are greatly improved
compared with a few decades ago, and even better data are imminent, it makes
sense to revisit original modelling assumptions and examine critically their
shortcomings in respect of modern science. Specifically this article argues
that ideal MHD is a poor approximation around recombination, since it
inherently restricts evolutionary timescales, and is often misapplied in the
existing literature.Comment: 5 page
Hybrid modeling of renewable energy systems and its application to a hot water solar plant
IFAC - CONFERENCE ON CONTROL METHODOLOGIES AND TECHNOLOGY FOR ENERGY EFFICIENCY 29/03/2010 Vilamoura, PortugalA family of models that can be applied to various types of renewable energy plants is proposed. The methodology is used to model a solar plant for the production of sanitary water (the hot water production system installed at the “Hospital Universitario Virgen del Rocío”, Seville, Spain). A detailed examination of the behavior of the plant has produced a model which has served to identify niches of inefficiency in the operation. The model is later used to tune the parameters of a controller to improve operation.Ministerio de Ciencia y Tecnología DPI 2007-66718-C04-01Junta de Andalucía TEP-0272
A Rich Population of X-ray Emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1
Recent optical and IR studies have revealed that the heavily-reddened
starburst cluster Westerlund 1 (Wd 1) contains at least 22 Wolf-Rayet (WR)
stars, comprising the richest WR population of any galactic cluster. We present
results of a senstive Chandra X-ray observation of Wd 1 which detected 12 of
the 22 known WR stars and the mysterious emission line star W9. The fraction of
detected WN stars is nearly identical to that of WC stars. The WN stars WR-A
and WR-B as well as W9 are exceptionally luminous in X-rays and have similar
hard heavily-absorbed spectra with strong Si XIII and S XV emission lines. The
luminous high-temperature X-ray emission of these three stars is characteristic
of colliding wind binary systems but their binary status remains to be
determined. Spectral fits of the X-ray bright sources WR-A and W9 with
isothermal plane-parallel shock models require high absorption column densities
log N = 22.56 (cm) and yield characteristic shock temperatures
kT_shock ~ 3 keV (T ~ 35 MK).Comment: ApJL, 2006, in press (3 figures, 1 table
On the changes in the physical properties of the ionized region around the Weigelt structures in Eta Carinae over the 5.54-yr spectroscopic cycle
We present HST/STIS observations and analysis of two prominent nebular
structures around the central source of Eta Carinae, the knots C and D. The
former is brighter than the latter for emission lines from intermediate or high
ionization potential ions. The brightness of lines from intermediate and high
ionization potential ions significantly decreases at phases around periastron.
We do not see conspicuous changes in the brightness of lines from low
ionization potential (<13.6 eV) that the total extinction towards the Weigelt
structures is that the total extinction towards the Weigelt structures is AsubV
=2/0. that the total extinction towards the Weigelt structures is AV = 2.0.
Weigelt C and D are characterized by an electron density of that the total
extinction towards the Weigelt structures is AV = 2.0. Weigelt C and D are
characterized by an electron density of 10exp6.9 cm-3 that does not
significantly change throughout the orbital cycle. The electron temperature
varies from 5500 K (around periastron) to 7200 K (around apastron). The
relative changes in the brightness of He I lines are well reproduced by the
variations in the electron temperature alone. We found that, at phases around
periastron, the electron temperature seems to be higher for Weigelt C than that
of D. The Weigelt structures are located close to the Homunculus equatorial
plane, at a distance of about 1240 AU from the central source. From the
analysis of proper motion and age, the Weigelt complex can be associated with
the equatorial structure called the Butterfly Nebula surrounding the central
binary system.Comment: 19 pages, 18 figure
- …
