570 research outputs found
Ultra-high-resolution dual-source CT for forensic dental visualization—discrimination of ceramic and composite fillings
Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purpose
Stable transduction with lentiviral vectors and amplification of immature hematopoietic progenitors from cord blood of preterm human fetuses
Umbilical cord blood (CB) from the early gestational human fetus is recognized as a rich source of hematopoietic stem cells. To examine the value of fetal CB for gene therapy of inborn immunohematopoietic disorders, we tested the feasibility of genetic modification of CD34(+) cells from CB at weeks 24 to 34 of pregnancy, using lentiviral vector-mediated transfer of the green fluorescent protein (GFP) gene. The transduction rate of CD34(+) cells was 42 +/- 9%, resulting in GFP expression in 23 +/- 4% of colonies derived from colony-forming units (CFUs) and 11 +/- 1% from primitive long-term culture-initiating cells (LTC-ICs). Cell cycle analysis demonstrated transduction and GFP expression in cells in the G(0) phase, which contains immature hematopoietic progenitors. Transduced fetal CD34(+) cells could be expanded 1000-fold in long-term cultures supplemented with megakaryocyte growth and development factor along with Flt-3 ligand. At week 10, expression of GFP was observed in 40.5 +/- 11.7% of CFU-derived colonies. While prestimulation of CD34(+) cells with cytokines prior to transduction increased the efficiency of GFP transfer 2- to 3-fold, long-term maintenance of GFP-expressing CFUs occurred only in the absence of prestimulation. The GFP gene was found integrated into the genomic DNA of 35% of LTC-IC-derived colonies initiated at week 10, but GFP expression was not detectable, suggesting downregulation of transgene activity during the extended culture period. These results indicate that human fetal CB progenitors are amenable to genetic modification by lentiviral vectors and may serve as a target for gene therapy of hematopoietic disorders by prenatal autologous transplantation
Angiofil®-mediated visualization of the vascular system by microcomputed tomography: a feasibility study
Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil®, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil® is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil® a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping
Virtopsy: Zukunftsträchtige Forschung in der Rechtsmedizin
Computed tomography techniques have been developed over the last 10 years and have found various applications in the forensic field. The most recent development is multislice computed tomography combined with photogrammetry-based surface optical scanning and image rendering techniques. This combination of techniques can be used to produce 3-dimensional images of injury patterns for comparison with suspect weapons and also to screen for pathological conditions in the living or deceased. This technology provides a minimally invasive procedure for capturing forensically relevant images which can be produced in the courtroom. The rapid developments in imaging techniques could provide an alternative to conventional autopsy procedures in the futur
Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120
BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
Unique V3 Loop Sequence Derived from the R2 Strain of HIV-Type 1 Elicits Broad Neutralizing Antibodies
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies. In this
study, DNA vaccines were constructed to express the gp120 subunit of Env from the isolate HIV-1R2 using both wild-type and codon- ptimized gene sequences. Three copies of the murine C3d were added to the carboxyl terminus to enhance the immunogenicity of the expressed fusion protein. Mice (BALB/c) vaccinated with DNA plasmid expressing the gp120R2 using codon-optimized Env sequences elicited high-titer anti-Env antibodies regardless of conjugation to C3d. In contrast, only
mice vaccinated with DNA using wild-type gp120R2 sequences fused to mC3d3, had detectable anti- Env antibodies. Interestingly, mice vaccinated with DNA expressing gp120R2 from codon-optimized
sequences elicited antibodies that neutralized both homologous and heterologous HIV-1 isolates. To determine if the unique sequence found in the crown of the V3 loop of the EnvR2 was responsible
for the elicitation of the cross-clade neutralizing antibodies, the codons encoding for the Pro-Met (amino acids 313–314) were introduced into the sequences encoding the gp120ADA (R5) or gp12089.6 (R5X4). Mice vaccinated with gp120ADA–mC3d3–DNA with the Pro–Met mutation had antibodies that neutralized HIV-1 infection, but not the gp12089.6–mC3d3–DNA. Therefore, the use of the unique sequences in the EnvR2 introduced into an R5 tropic envelope, in conjunction with C3d fusion, was effective at broadening the number of viruses that could be neutralized. However, the introduction of this same sequence into an R5X4-tropic envelope was ineffective in eliciting improved cross-clade neutralizing antibodies. Originally published AIDS Research and Human Retroviruses, Vol. 20, No. 11, Nov 200
Evolutionary factors affecting the cross-species utility of newly developed microsatellite markers in seabirds
Microsatellite loci are ideal for testing hypotheses relating to genetic segregation at fine spatio-temporal scales. They are also conserved among closely related species, making them potentially useful for clarifying interspecific relationships between recently diverged taxa. However, mutations at primer binding sites may lead to increased non-amplification, or disruptions that may lead to decreased polymorphism in non-target species. Furthermore, high mutation rates and constraints on allele size may also lead, with evolutionary time, to an increase in convergently evolved allele size classes, biasing measures of interspecific genetic differentiation. Here, we used next-generation sequencing to develop microsatellite markers from a shotgun genome sequence of the sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri), that we tested for cross-species amplification in other Pachyptila and related sub-Antarctic species. We found that heterozygosity decreased and the proportion of non-amplifying loci increased with phylogenetic distance from the target species. Surprisingly, we found that species trees estimated from interspecific FST provided better approximations of mtDNA relationships among the studied species than those estimated using DC, even though FST was more affected by null alleles. We observed a significantly non-linear second order polynomial relationship between microsatellite and mtDNA distances. We propose that the loss of linearity with increasing mtDNA distance stems from an increasing proportion of homoplastic allele size classes that are identical in state, but not identical by descent. Therefore, despite high cross-species amplification success and high polymorphism among the closely related Pachyptila species, we caution against the use of microsatellites in phylogenetic inference among distantly related taxa
Illustrated argument for CT-scanning a whole car for the forensic investigation of projectile holes, defects, fragments and possible trajectories
Contemporary documentation of a car with bullet defects after a shooting incident can secure the usual tracks and gunshot residue, take photographs, and use trajectory rods and probes. Since the advent of the ”XXL-CT -Scanner” (Fraunhofer Institute, Germany), we have wondered if the advantages of volume scanning CT, already noted for forensic pathology, could be applied to cars. To this end, we damaged a small 3D-printed car model with an electric drill and added CT -dense material with a soldering iron, simulating linearly configured defect morphologies with metal particles. This model was CT -scanned and the resulting data visualized to illustrate how these visualizations can support reconstructive visualization of trajectories. Performing a real XXL-CT scan of a bullet-riddled car requires extensive preparation, transportation, and other logistical measures that are costly and time-consuming. Nonetheless, we suggest that this is a worthwhile research direction to explore
Cinematic rendering of a burst sagittal suture caused by an occipito-frontal gunshot wound
The computed tomography (CT) scan of a 19-year-old man who died from an occipito-frontal gunshot wound presented an impressive radiating fracture line where the entire sagittal suture burst due to the high intracranial pressure that arose from a near-contact shot from a 9 mm bullet fired from a Glock 17 pistol. Photorealistic depictions of the radiating fracture lines along the cranial bones were created using three-dimensional reconstruction methods, such as the novel cinematic rendering technique that simulates the propagation and interaction of light when it passes through volumetric data. Since the brain had collapsed, depiction of soft tissue was insufficient on CT images. An additional magnetic resonance imaging (MRI) examination was performed, which enabled the diagnostic assessment of cerebral injuries
- …
