3,523 research outputs found
Quasi-stationary states and the range of pair interactions
"Quasi-stationary" states are approximately time-independent out of
equilibrium states which have been observed in a variety of systems of
particles interacting by long-range interactions. We investigate here the
conditions of their occurrence for a generic pair interaction V(r \rightarrow
\infty) \sim 1/r^a with a > 0, in d>1 dimensions. We generalize analytic
calculations known for gravity in d=3 to determine the scaling parametric
dependences of their relaxation rates due to two body collisions, and report
extensive numerical simulations testing their validity. Our results lead to the
conclusion that, for a < d-1, the existence of quasi-stationary states is
ensured by the large distance behavior of the interaction alone, while for a >
d-1 it is conditioned on the short distance properties of the interaction,
requiring the presence of a sufficiently large soft-core in the interaction
potential.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev. Let
Is the dark matter halo of the Milky Way flattened?
We performed an extended analysis of the parameter space for the interaction
of the Magellanic System with the Milky Way (MW). The varied parameters cover
the phase space parameters, the masses, the structure, and the orientation of
both Magellanic Clouds, as well as the flattening of the dark matter halo of
the MW. The analysis was done by a specially adopted optimization code
searching for the best match between numerical models and the detailed HI map
of the Magellanic System by Bruens et al. (2005). The applied search algorithm
is a genetic algorithm combined with a code based on the fast, but
approximative restricted N-body method. By this, we were able to analyze more
than 10^6 models, which makes this study one of the most extended ones for the
Magellanic System. Here we focus on the flattening q of the axially symmetric
MW dark matter halo potential, that is studied within the range 0.74<=q<=1.20.
We show that creation of a trailing tail (Magellanic Stream) and a leading
stream (Leading Arm) is quite a common feature of the Magellanic System-MW
interaction, and such structures were modeled across the entire range of halo
flattening values. However, important differences exist between the models,
concerning density distribution and kinematics of HI, and also the dynamical
evolution of the Magellanic System. Detailed analysis of the overall agreement
between modeled and observed distribution of neutral hydrogen shows that the
models assuming an oblate (q<1.0) dark matter halo of the Galaxy allow for
better satisfaction of HI observations than models with other halo
configurations.Comment: 19 pages, 20 figures, 2 appendices, accepted for publication in A&
Combined Palladium-Silver and Iodine-Xenon Isotope Systematics for Allegan (H5) and Dhofar 125 (Acapulcoite)
Physical Processes in Star-Gas Systems
First we present a recently developed 3D chemodynamical code for galaxy
evolution from the K**2 collaboration. It follows the evolution of all
components of a galaxy such as dark matter, stars, molecular clouds and diffuse
interstellar matter (ISM). Dark matter and stars are treated as collisionless
N-body systems. The ISM is numerically described by a smoothed particle
hydrodynamics (SPH) approach for the diffuse (hot) gas and a sticky particle
scheme for the (cool) molecular clouds. Physical processs such as star
formation, stellar death or condensation and evaporation processes of clouds
interacting with the ISM are described locally. An example application of the
model to a star forming dwarf galaxy will be shown for comparison with other
codes. Secondly we will discuss new kinds of exotic chemodynamical processes,
as they occur in dense gas-star systems in galactic nuclei, such as
non-standard ``drag''-force interactions, destructive and gas producing stellar
collisions. Their implementation in 1D dynamical models of galactic nuclei is
presented. Future prospects to generalize these to 3D are work in progress and
will be discussed.Comment: 4 pages, 4 figures, "The 5th Workshop on Galactic Chemodynamics" -
Swinburne University (9-11 July 2003). To be published in the Publications of
the Astronomical Society of Australia in 2004 (B.K. Gibson and D. Kawata,
eds.). Accepted version, minor changes relative to origina
Measuring dark matter by modeling interacting galaxies
The dark matter content of galaxies is usually determined from galaxies in
dynamical equilibrium, mainly from rotationally supported galactic components.
Such determinations restrict measurements to special regions in galaxies, e.g.
the galactic plane(s), whereas other regions are not probed at all. Interacting
galaxies offer an alternative, because extended tidal tails often probe outer
or off-plane regions of galaxies. However, these systems are neither in
dynamical equilibrium nor simple, because they are composed of two or more
galaxies, by this increasing the associated parameter space.We present our
genetic algorithm based modeling tool which allows to investigate the extended
parameter space of interacting galaxies. From these studies, we derive the
dynamical history of (well observed) galaxies. Among other parameters we
constrain the dark matter content of the involved galaxies. We demonstrate the
applicability of this strategy with examples ranging from stellar streams
around theMilkyWay to extended tidal tails, from proto-typical binary galaxies
(like M51 or the Antennae system) to small group of galaxies.Comment: 4 pages, 3 figures, Conf.: Hunting for the dark, Malta 200
Event-by-event analysis : possible testing ground for the nuclear matter equation of state
Intranuclear cascade calculations and fluid dynamical predictions of the kinetic energy flow are compared for collisions of 40Ca + 40Ca and 238U + 238U. The aspect ratio, R13, as obtained from the global analysis, is independent of the bombarding energy for the intranuclear cascade model. Fluid dynamics, on the other hand, predicts a dramatic increase of R13 at medium energies Elab≲200 MeV/nucleon. In fact, R13(Elab) directly reflects the incompressibility of the nuclear matter and can be used to extract the nuclear equation of stat at high densities. Distortions of the flow tensor due to few nucleon scattering are analyzed. Possible procedures to remove this background from experimental data are discussed
- …
