3,523 research outputs found

    Quasi-stationary states and the range of pair interactions

    Full text link
    "Quasi-stationary" states are approximately time-independent out of equilibrium states which have been observed in a variety of systems of particles interacting by long-range interactions. We investigate here the conditions of their occurrence for a generic pair interaction V(r \rightarrow \infty) \sim 1/r^a with a > 0, in d>1 dimensions. We generalize analytic calculations known for gravity in d=3 to determine the scaling parametric dependences of their relaxation rates due to two body collisions, and report extensive numerical simulations testing their validity. Our results lead to the conclusion that, for a < d-1, the existence of quasi-stationary states is ensured by the large distance behavior of the interaction alone, while for a > d-1 it is conditioned on the short distance properties of the interaction, requiring the presence of a sufficiently large soft-core in the interaction potential.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev. Let

    Is the dark matter halo of the Milky Way flattened?

    Full text link
    We performed an extended analysis of the parameter space for the interaction of the Magellanic System with the Milky Way (MW). The varied parameters cover the phase space parameters, the masses, the structure, and the orientation of both Magellanic Clouds, as well as the flattening of the dark matter halo of the MW. The analysis was done by a specially adopted optimization code searching for the best match between numerical models and the detailed HI map of the Magellanic System by Bruens et al. (2005). The applied search algorithm is a genetic algorithm combined with a code based on the fast, but approximative restricted N-body method. By this, we were able to analyze more than 10^6 models, which makes this study one of the most extended ones for the Magellanic System. Here we focus on the flattening q of the axially symmetric MW dark matter halo potential, that is studied within the range 0.74<=q<=1.20. We show that creation of a trailing tail (Magellanic Stream) and a leading stream (Leading Arm) is quite a common feature of the Magellanic System-MW interaction, and such structures were modeled across the entire range of halo flattening values. However, important differences exist between the models, concerning density distribution and kinematics of HI, and also the dynamical evolution of the Magellanic System. Detailed analysis of the overall agreement between modeled and observed distribution of neutral hydrogen shows that the models assuming an oblate (q<1.0) dark matter halo of the Galaxy allow for better satisfaction of HI observations than models with other halo configurations.Comment: 19 pages, 20 figures, 2 appendices, accepted for publication in A&

    Physical Processes in Star-Gas Systems

    Full text link
    First we present a recently developed 3D chemodynamical code for galaxy evolution from the K**2 collaboration. It follows the evolution of all components of a galaxy such as dark matter, stars, molecular clouds and diffuse interstellar matter (ISM). Dark matter and stars are treated as collisionless N-body systems. The ISM is numerically described by a smoothed particle hydrodynamics (SPH) approach for the diffuse (hot) gas and a sticky particle scheme for the (cool) molecular clouds. Physical processs such as star formation, stellar death or condensation and evaporation processes of clouds interacting with the ISM are described locally. An example application of the model to a star forming dwarf galaxy will be shown for comparison with other codes. Secondly we will discuss new kinds of exotic chemodynamical processes, as they occur in dense gas-star systems in galactic nuclei, such as non-standard ``drag''-force interactions, destructive and gas producing stellar collisions. Their implementation in 1D dynamical models of galactic nuclei is presented. Future prospects to generalize these to 3D are work in progress and will be discussed.Comment: 4 pages, 4 figures, "The 5th Workshop on Galactic Chemodynamics" - Swinburne University (9-11 July 2003). To be published in the Publications of the Astronomical Society of Australia in 2004 (B.K. Gibson and D. Kawata, eds.). Accepted version, minor changes relative to origina

    Measuring dark matter by modeling interacting galaxies

    Full text link
    The dark matter content of galaxies is usually determined from galaxies in dynamical equilibrium, mainly from rotationally supported galactic components. Such determinations restrict measurements to special regions in galaxies, e.g. the galactic plane(s), whereas other regions are not probed at all. Interacting galaxies offer an alternative, because extended tidal tails often probe outer or off-plane regions of galaxies. However, these systems are neither in dynamical equilibrium nor simple, because they are composed of two or more galaxies, by this increasing the associated parameter space.We present our genetic algorithm based modeling tool which allows to investigate the extended parameter space of interacting galaxies. From these studies, we derive the dynamical history of (well observed) galaxies. Among other parameters we constrain the dark matter content of the involved galaxies. We demonstrate the applicability of this strategy with examples ranging from stellar streams around theMilkyWay to extended tidal tails, from proto-typical binary galaxies (like M51 or the Antennae system) to small group of galaxies.Comment: 4 pages, 3 figures, Conf.: Hunting for the dark, Malta 200

    Event-by-event analysis : possible testing ground for the nuclear matter equation of state

    Get PDF
    Intranuclear cascade calculations and fluid dynamical predictions of the kinetic energy flow are compared for collisions of 40Ca + 40Ca and 238U + 238U. The aspect ratio, R13, as obtained from the global analysis, is independent of the bombarding energy for the intranuclear cascade model. Fluid dynamics, on the other hand, predicts a dramatic increase of R13 at medium energies Elab&#8818;200 MeV/nucleon. In fact, R13(Elab) directly reflects the incompressibility of the nuclear matter and can be used to extract the nuclear equation of stat at high densities. Distortions of the flow tensor due to few nucleon scattering are analyzed. Possible procedures to remove this background from experimental data are discussed
    corecore