878 research outputs found
Giant Monopole Resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions
Background: Following the 2007 precise measurements of monopole strengths in
tin isotopes, there has been a continuous theoretical effort to obtain a
precise description of the experimental results. Up to now, there is no
satisfactory explanation of why the tin nuclei appear to be significantly
softer than 208Pb.
Purpose: We determine the influence of finite-range and separable pairing
interactions on monopole strength functions in semi-magic nuclei.
Methods: We employ self-consistently the Quasiparticle Random Phase
Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the
Arnoldi method to solve the linear-response problem with pairing.
Results: We found that the difference between centroids of Giant Monopole
Resonances measured in lead and tin (about 1 MeV) always turns out to be
overestimated by about 100%. We also found that the volume incompressibility,
obtained by adjusting the liquid-drop expression to microscopic results, is
significantly larger than the infinite-matter incompressibility.
Conclusions: The zero-range and separable pairing forces cannot induce
modifications of monopole strength functions in tin to match experimental data.Comment: 11 RevTeX pages, 16 figures, 1 table, extended versio
Collective vibrational states with fast iterative QRPA method
An iterative method we previously proposed to compute nuclear strength
functions is developed to allow it to accurately calculate properties of
individual nuclear states. The approach is based on the
quasi-particle-random-phase approximation (QRPA) and uses an iterative
non-hermitian Arnoldi diagonalization method where the QRPA matrix does not
have to be explicitly calculated and stored. The method gives substantial
advantages over conventional QRPA calculations with regards to the
computational cost. The method is used to calculate excitation energies and
decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes
using three different Skyrme interactions and a separable gaussian pairing
force.Comment: 10 pages, 11 figure
Continuity equation and local gauge invariance for the N3LO nuclear Energy Density Functionals
Background: The next-to-next-to-next-to-leading order (N3LO) nuclear energy
density functional extends the standard Skyrme functional with new terms
depending on higher-order derivatives of densities, introduced to gain better
precision in the nuclear many-body calculations. A thorough study of the
transformation properties of the functional with respect to different
symmetries is required, as a step preliminary to the adjustment of the coupling
constants. Purpose: Determine to which extent the presence of higher-order
derivatives in the functional can be compatible with the continuity equation.
In particular, to study the relations between the validity of the continuity
equation and invariance of the functional under gauge transformations. Methods:
Derive conditions for the validity of the continuity equation in the framework
of time-dependent density functional theory. The conditions apply separately to
the four spin-isospin channels of the one-body density matrix. Results: We
obtained four sets of constraints on the coupling constants of the N3LO energy
density functional that guarantee the validity of the continuity equation in
all spin-isospin channels. In particular, for the scalar-isoscalar channel, the
constraints are the same as those resulting from imposing the standard U(1)
local-gauge-invariance conditions. Conclusions: Validity of the continuity
equation in the four spin-isospin channels is equivalent to the local-gauge
invariance of the energy density functional. For vector and isovector channels,
such validity requires the invariance of the functional under local rotations
in the spin and isospin spaces.Comment: 12 Latex pages, submitted to Physical Review
Study of odd-mass N=82 isotones with realistic effective interactions
The microscopic quasiparticle-phonon model, MQPM, is used to study the energy
spectra of the odd , N=82 isotones. The results are compared with
experimental data, with the extreme quasiparticle-phonon limit and with the
results of an unrestricted shell model (SM)
calculation. The interaction used in these calculations is a realistic two-body
G-matrix interaction derived from modern meson-exchange potential models for
the nucleon-nucleon interaction. For the shell model all the two-body matrix
elements are renormalized by the -box method whereas for the MQPM the
effective interaction is defined by the G-matrix.Comment: Elsevier latex style espart, 26 pages, submitted to Nuclear Physics
Self Consistent and Renormalized particle-particle RPA in a Schematic Model
The dynamical effects of ground state correlations for excitation energies
and transition strengths near the superfluid phase transition are studied in
the soluble two level pairing model, in the context of the particle-particle
self consistent Random Phase Approximation (SCRPA). Exact results are well
reproduced across the transition region, beyond the collapse of the standard
particle-particle Random Phase Approximation. The effects of two-body
correlation in the SCRPA are displayed explicitly.Comment: 11 pages, revtex, 3ps figures, to appear in Phys. Rev.
Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector
We present an update of our previous study (astro-ph/0112312) on how
oscillations affect the signal from a supernova core collapse observed in the
LVD detector at LNGS. In this paper we use a recent, more precise determination
of the cross section (astro-ph/0302055) to calculate the expected number of
inverse beta decay events, we introduce in the simulation also the -{\rm
Fe} interactions, we include the Earth matter effects and, finally, we study
also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200
Neutron-Proton Correlations in an Exactly Solvable Model
We examine isovector and isoscalar neutron-proton correlations in an exactly
solvable model based on the algebra SO(8). We look particularly closely at
Gamow-Teller strength and double beta decay, both to isolate the effects of the
two kinds of pairing and to test two approximation schemes: the renormalized
neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing
correlations become strong enough a phase transition occurs and the dependence
of the Gamow-Teller beta+ strength on isospin changes in a dramatic and
unfamiliar way, actually increasing as neutrons are added to an N=Z core.
Renormalization eliminates the well-known instabilities that plague the QRPA as
the phase transition is approached, but only by unnaturally suppressing the
isoscalar correlations. Generalized BCS theory, on the other hand, reproduces
the Gamow-Teller strength more accurately in the isoscalar phase than in the
usual isovector phase, even though its predictions for energies are equally
good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar
side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe
Neutrinoless double beta decay within Self-consistent Renormalized Quasiparticle Random Phase Approximation and inclusion of induced nucleon currents
The first, to our knowledge, calculation of neutrinoless double beta decay
(-decay) matrix elements within the self-consistent
renormalised Quasiparticle Random Phase Approximation (SRQRPA) is presented.
The contribution from the momentum-dependent induced nucleon currents to
-decay amplitude is taken into account. A detailed nuclear
structure study includes the discussion of the sensitivity of the obtained
SRQRPA results for -decay of Ge to the parameters of
nuclear Hamiltonian, two-nucleon short-range correlations and the truncation of
the model space. A comparision with the standard and renormalized QRPA is
presented. We have found a considerable reduction of the SRQRPA nuclear matrix
elements, resulting in less stringent limits for the effective neutrino mass.Comment: 13 pages, 3 figures, 1 tabl
Single- and double-beta decay Fermi-transitions in an exactly solvable model
An exactly solvable model suitable for the description of single and
double-beta decay processes of the Fermi-type is introduced. The model is
equivalent to the exact shell-model treatment of protons and neutrons in a
single j-shell. Exact eigenvalues and eigenvectors are compared to those
corresponding to the hamiltonian in the quasiparticle basis (qp) and with the
results of both the standard quasiparticle random phase approximation (QRPA)
and the renormalized one (RQRPA). The role of the scattering term of the
quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with
zero energy is shown to be related to the collapse of the QRPA. The RQRPA and
the qp solutions do not include this zero-energy eigenvalue in their spectra,
probably due to spurious correlations. The meaning of this result in terms of
symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to
Physcal Review
Fully-Renormalized QRPA fulfills Ikeda sum rule exactly
The renormalized quasiparticle-RPA is reformulated for even-even nuclei using
restrictions imposed by the commutativity of the phonon creation operator with
the total particle number operator. This new version, Fully-Renormalized QRPA
(FR-QRPA), is free from the spurious low-energy solutions. Analytical proof is
given that the Ikeda sum rule is fullfiled within the FR-QRPA.Comment: 9 page
- …
