2,766 research outputs found
Meanders and the Temperley-Lieb algebra
The statistics of meanders is studied in connection with the Temperley-Lieb
algebra. Each (multi-component) meander corresponds to a pair of reduced
elements of the algebra. The assignment of a weight per connected component
of meander translates into a bilinear form on the algebra, with a Gram matrix
encoding the fine structure of meander numbers. Here, we calculate the
associated Gram determinant as a function of , and make use of the
orthogonalization process to derive alternative expressions for meander numbers
as sums over correlated random walks.Comment: 85p, uuencoded, uses harvmac (l mode) and epsf, 88 figure
Comparisons of Protein and Peptide Complexity in Poneroid and Formicoid Ant Venoms
© 2016 American Chemical Society. Animal venom peptides are currently being developed as novel drugs and bioinsecticides. Because ants use venoms for defense and predation, venomous ants represent an untapped source of potential bioactive toxins. This study compared the protein and peptide components of the poneroid ants Neoponera commutata, Neoponera apicalis, and Odontomachus hastatus and the formicoid ants Ectatomma tuberculatum, Ectatomma brunneum, and Myrmecia gulosa. 1D and 2D PAGE revealed venom proteins in the mass range 250 kDa. NanoLC-ESI-QTOF MS/MS analysis of tryptic peptides revealed the presence of common venom proteins and also many undescribed proteins. RP-HPLC separation followed by MALDI-TOF MS of the venom peptides also revealed considerable heterogeneity. It was found that the venoms contained between 144 and 1032 peptides with 5-95% of peptides in the ranges 1-4 and 1-8 kDa for poneroid and formicoid ants, respectively. By employing the reducing MALDI matrix 1,5-diaminonapthalene, up to 28 disulfide-bonded peptides were also identified in each of the venoms. In particular, the mass range of peptides from poneroid ants is lower than peptides from other venoms, indicating possible novel structures and pharmacologies. These results indicate that ant venoms represent an enormous, untapped source of novel therapeutic and bioinsecticide leads
Supervision of the ATLAS High Level Trigger System
Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, PDF (from MS Word). PSN TUGT009; Available at http://www.slac.stanford.edu/econf/C0303241/proc/papers/TUGT009.PDF pers/THJT006.PDFInternational audienceThe ATLAS High Level Trigger (HLT) system provides software-based event selection after the initial LVL1 hardware trigger. It is composed of two stages, the LVL2 trigger and the Event Filter. The HLT is implemented as software tasks running on large processor farms. An essential part of the HLT is the supervision system, which is responsible for configuring, coordinating, controlling and monitoring the many hundreds of processes running in the HLT. A prototype implementation of the supervision system, using tools from the ATLAS Online Software system is presented. Results from scalability tests are also presented where the supervision system was shown to be capable of controlling over 1000 HLT processes running on 230 nodes
A transfer matrix approach to the enumeration of plane meanders
A closed plane meander of order is a closed self-avoiding curve
intersecting an infinite line times. Meanders are considered distinct up
to any smooth deformation leaving the line fixed. We have developed an improved
algorithm, based on transfer matrix methods, for the enumeration of plane
meanders. While the algorithm has exponential complexity, its rate of growth is
much smaller than that of previous algorithms. The algorithm is easily modified
to enumerate various systems of closed meanders, semi-meanders, open meanders
and many other geometries.Comment: 13 pages, 9 eps figures, to appear in J. Phys.
The biochemical toxin arsenal from ant venoms
© 2016 by the authors; licensee MDPI, Basel, Switzerland. Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents
A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury.
The p75 neurotrophin receptor is important in multiple physiological actions including neuronal survival and neurite outgrowth during development, and after central nervous system injury. We have discovered a novel piperazine-derived compound, EVT901, which interferes with p75 neurotrophin receptor oligomerization through direct interaction with the first cysteine-rich domain of the extracellular region. Using ligand binding assays with cysteine-rich domains-fused p75 neurotrophin receptor, we confirmed that EVT901 interferes with oligomerization of full-length p75 neurotrophin receptor in a dose-dependent manner. Here we report that EVT901 reduces binding of pro-nerve growth factor to p75 neurotrophin receptor, blocks pro-nerve growth factor induced apoptosis in cells expressing p75 neurotrophin receptor, and enhances neurite outgrowth in vitro Furthermore, we demonstrate that EVT901 abrogates p75 neurotrophin receptor signalling by other ligands, such as prion peptide and amyloid-β. To test the efficacy of EVT901 in vivo, we evaluated the outcome in two models of traumatic brain injury. We generated controlled cortical impacts in adult rats. Using unbiased stereological analysis, we found that EVT901 delivered intravenously daily for 1 week after injury, reduced lesion size, protected cortical neurons and oligodendrocytes, and had a positive effect on neurological function. After lateral fluid percussion injury in adult rats, oral treatment with EVT901 reduced neuronal death in the hippocampus and thalamus, reduced long-term cognitive deficits, and reduced the occurrence of post-traumatic seizure activity. Together, these studies provide a new reagent for altering p75 neurotrophin receptor actions after injury and suggest that EVT901 may be useful in treatment of central nervous system trauma and other neurological disorders where p75 neurotrophin receptor signalling is affected
Isotope shift calculations for atoms with one valence electron
This work presents a method for the ab initio calculation of isotope shift in
atoms and ions with one valence electron above closed shells. As a zero
approximation we use relativistic Hartree-Fock and then calculate correlation
corrections. The main motivation for developing the method comes from the need
to analyse whether different isotope abundances in early universe can
contribute to the observed anomalies in quasar absorption spectra. The current
best explanation for these anomalies is the assumption that the fine structure
constant, alpha, was smaller at early epoch. We test the isotope shift method
by comparing the calculated and experimental isotope shift for the alkali and
alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be
good. We then calculate the isotope shift for some astronomically relevant
transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page
Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR
We use fits to recent published CPLEAR data on neutral kaon decays to
and to constrain the CPT--violation parameters
appearing in a formulation of the neutral kaon system as an open
quantum-mechanical system. The obtained upper limits of the CPT--violation
parameters are approaching the range suggested by certain ideas concerning
quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
Shape Coexistence and the Effective Nucleon-Nucleon Interaction
The phenomenon of shape coexistence is discussed within the self-consistent
Hartree-Fock method and the nuclear shell model. The occurrence of the
coexisting configurations with different intrinsic shapes is traced back to the
properties of the effective Hamiltonian.Comment: 40 pages (16 text, 24 figures). The file may also be retrieved at
http://csep2.phy.ornl.gov/theory_group/people/dean/shape_coex/shapes.htm
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
- …
