3,223 research outputs found
Non-destructive evaluation of cement-based materials from pressure-stimulated electrical emission - Preliminary results
This is the post-print version of the final paper published in Construction and Building Materials. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper introduces the possibility of in situ assessment of loading and remaining strength in concrete structures by means of measuring discharge of electric current from loaded specimens.
The paper demonstrates that the techniques have been applied to other rock-like materials, but that for the first time they are applied to cement-based materials and a theoretical model is proposed in relation to the appearance of electrical signals during sample loading and up to fracture.
A series of laboratory experiments on cement mortar specimens in simple uniaxial compression, and subsequently in bending – hence displaying both tension and compression – are described and show clear correlations between resulting strains and currents measured. Under uniaxial loading there is a well-defined relationship between the pressure-stimulated current (PSC) as a result of a monotonic mechanical loading regime. Similar results are observed in the three-point bending tests where a range of loading regimes is studied, including stepped changes in loading.
While currents can be measured at low strains, best results seem to be obtained when strains approach and exceed yield stress values.
This technique clearly has immense potential for structural health monitoring of cement-based structures. Both intermittent and continuous monitoring becomes possible, and given an ongoing campaign of monitoring, remaining strength can be estimated
Recommended from our members
A CMOS Magnitude/Phase Measurement Chip for Impedance Spectroscopy
The measurement of electrical impedance is used in a plethora of biomedical applications. The most common technique used is synchronous demodulation, which provides the real and imaginary parts of the impedance. However, in practice, the method requires elaborate calibration and matching between the injection and monitoring stages. This paper presents the integrated realization of an alternative method that is less intricate to implement. The circuit was fabricated in a 0.35-μm CMOS technology, occupies an active area of 0.4 mm2 , and dissipates about 21 mW of power from ±2.5 V supplies. The chip was used to measure equivalent RC circuits of the electrode-tissue interface over the frequency range of 100 Hz to 100 kHz, showing good correlation with the theoretical results
Recommended from our members
Towards an optimized tetrapolar electrical impedance lithium detection probe for bipolar disorder: A simulation study
Bipolar disorder is characterized as a manic-depressive syndrome with severe risks to the individual. Bipolar patients' therapy involves administration of lithium which has proven to be effective for mood stabilization. The therapeutic concentration window for lithium in blood plasma is typically between 0.6-1.5 mM and is of vital importance that concentrations do not exceed the 1.5mM as it can be toxic. Accurate monitoring of the concentration changes of Lithium in blood, down to levels of approximately 0.2mM is vital since toxicity levels are in close proximity to therapeutic levels. This paper aims to study the sensitivity of tetrapolar electrical impedance measurements when used to monitor changes in the conductivity of a solution/sample as in the case of changes in Lithium concentration in blood
Recommended from our members
High-power CMOS current driver with accurate transconductance for electrical impedance tomography
Current drivers are fundamental circuits in bioimpedance measurements including electrical impedance tomography (EIT). In the case of EIT, the current driver is required to have a large output impedance to guarantee high current accuracy over a wide range of load impedance values. This paper presents an integrated current driver which meets these requirements and is capable of delivering large sinusoidal currents to the load. The current driver employs a differential architecture and negative feedback, the latter allowing the output current to be accurately set by the ratio of the input voltage to a resistor value. The circuit was fabricated in a 0.6-μ m high-voltage CMOS process technology and its core occupies a silicon area of 0.64 mm2. It operates from a ± 9 V power supply and can deliver output currents up to 5 mA p-p. The accuracy of the maximum output current is within 0.41% up to 500 kHz, reducing to 0.47% at 1 MHz with a total harmonic distortion of 0.69%. The output impedance is 665 kΩ at 100 kHz and 372 k Ω at 500 kHz
Recommended from our members
Optimization of Tetrapolar Impedance Electrodes in Microfluidic Devices for Point of Care Diagnostics using Finite Element Modeling
Electrophoresis is widely applied in the field of biochemistry and molecular biology. Tetrapolar electrical impedance sensing (TEIS) has been shown capable of replacing the conventional detection technology in order to develop a point of care electrophoretic analyzer. Besides the advantages of reduced influence of electrode polarization, TEIS is affected by sensitivity distribution depending on the electrode design. A well reported practice outside of electrophoresis, systematic investigation of the effects of sensitivity distribution on the TEIS in microfluidic devices has not been conducted. Here we utilize finite element modeling, backed by experimental results, to optimize the sensor design within an electrophoretic separation device. Numerous sensor designs were validated regarding detectability, sensitivity and spatial resolution. The results show, that minimizing the distance between the central/pick-up electrodes increases sensitivity and spatial resolution whereas the distance between the central electrodes and the outer electrode do not influence sensitivity and spatial resolution
Towards a Reconfigurable Sense-and-Stimulate Neural Interface Generating Biphasic Interleaved Stimulus
Published versio
The Aegean archipelago: a natural laboratory of evolution, ecology and civilisations
The Aegean archipelago, comprising numerous islands and islets with great heterogeneity in topographic, geological, historical and environmental properties, offers an ideal natural laboratory for ecological and evolutionary research, and has been the stage for a very long interaction between human civilizations and local ecosystems. This work presents insights that have been gained from past and current relevant research in the area, highlighting also the importance of the Aegean archipelago as a useful model to address many major questions in biogeography, ecology and evolutionary processes. Among the most interesting findings from such studies concern the role of habitat heterogeneity as the most important determinant of species richness, the development of a new model (Choros) for the species–area–habitats relationship, the mechanistic aspects of the Small Island Effect, the very high rates of species turnover, the lack of a role for interspecific competition in shaping species co-occurrence patterns in most cases, the importance of non adaptive radiation in diversification of several taxa, the insights into the relative roles of vicariance and dispersal in speciation, the understanding of the interplay between human presence and the establishment of exotic species and extinction of indigenous biotas. Concluding, the Aegean archipelago is an ideal stage for research in evolution, ecology and biogeography, and has the potential to become a model study area at a global level, especially for land-bridge, continental islands
The Macaronesian province: patterns of species richness and endemism of arthropods
"[…]. The Macaronesian arthropod fauna displays a number of characteristics typical of oceanic islands, including a high degree of endemism, ranging from 19% for the Azores (Borges et al., 2005a), to 28% for Madeira (Borges et al., 2008a), 30% for Cape Verde (Arechavaleta etal., 2005) and 45% for the Canary Islands (Izquierdo et al., 2004; see Table I). The preponderance of endemic species has made the Macaronesian islands an outstanding area for studies of evolution and speciation, and arthropods from these islands have been the focus of particularly intensive investigation in the last ten years. Numerous biogeographic analyses of Macaronesian arthropod groups have provided valuable insights into the processes regulating species richness as well as the relationships among the region's endemics (e.g. Juan et al.,1996; Arnedo & Ribera, 1999; Borges & Brown, 1999; Emerson et al., 1999, 2006; Emerson & Oromí, 2005; Dimitrov et al., 2008; Borges & Hortal, 2009; Hochkirch & Görzig, 2009). Here we investigate the factors shaping arthropod species richness and patterns of endemism in the Macaronesian archipelagos, considering two levels of analysis: a) individual archipelagos of the Macaronesian region (except Madeira and Salvages due to their limited number of islands), and b) all the islands of the region altogether. We do this following the recently published works of Whittaker et al. (2008) and Borges & Hortal (2009), examining data sets for several taxa from the Macaronesian archipelagos. […]." (da Introdução)Fundação para a Ciência e a Tecnologia, Portugal
Recommended from our members
An Integrated Analog Readout for Multi-Frequency Bioimpedance Measurements
Bioimpedance spectroscopy is used in a wide range of biomedical applications. This paper presents an integrated analog readout, which employs synchronous detection to perform galvanostatic multi-channel, multi-frequency bioimpedance measurements. The circuit was fabricated in a 0.35-μm CMOS technology and occupies an area of 1.52 mm2. The effect of random dc offsets is investigated, along with the use of chopping to minimize them. Impedance measurements of a known RC load and skin (using commercially available electrodes) demonstrate the operation of the system over a frequency range up to 1 MHz. The circuit operates from a ±2.5 V power supply and has a power consumption of 3.4-mW per channel
- …
