239 research outputs found

    Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization'' by V. Koltchinskii

    Full text link
    Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization'' by V. Koltchinskii [arXiv:0708.0083]Comment: Published at http://dx.doi.org/10.1214/009053606000001064 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On Walsh code assignment

    Full text link
    The paper considers the problem of orthogonal variable spreading Walsh-code assignments. The aim of the paper is to provide assignments that can avoid both complicated signaling from the BS to the users and blind rate and code detection amongst a great number of possible codes. The assignments considered here use a partition of all users into several pools. Each pool can use its own codes that are different for different pools. Each user has only a few codes assigned to it within the pool. We state the problem as a combinatorial one expressed in terms of a binary n x k matrix M where is the number n of users, and k is the number of Walsh codes in the pool. A solution to the problem is given as a construction of M, which has the assignment property defined in the paper. Two constructions of such M are presented under different conditions on n and k. The first construction is optimal in the sense that it gives the minimal number of Walsh codes assigned to each user for given n and k. The optimality follows from a proved necessary condition for the existence of M with the assignment property. In addition, we propose a simple algorithm of optimal assignment for the first construction

    Optimal change-point estimation from indirect observations

    Full text link
    We study nonparametric change-point estimation from indirect noisy observations. Focusing on the white noise convolution model, we consider two classes of functions that are smooth apart from the change-point. We establish lower bounds on the minimax risk in estimating the change-point and develop rate optimal estimation procedures. The results demonstrate that the best achievable rates of convergence are determined both by smoothness of the function away from the change-point and by the degree of ill-posedness of the convolution operator. Optimality is obtained by introducing a new technique that involves, as a key element, detection of zero crossings of an estimate of the properly smoothed second derivative of the underlying function.Comment: Published at http://dx.doi.org/10.1214/009053605000000750 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimation of matrices with row sparsity

    Full text link
    An increasing number of applications is concerned with recovering a sparse matrix from noisy observations. In this paper, we consider the setting where each row of the unknown matrix is sparse. We establish minimax optimal rates of convergence for estimating matrices with row sparsity. A major focus in the present paper is on the derivation of lower bounds

    Penalized maximum likelihood and semiparametric second-order efficiency

    Full text link
    We consider the problem of estimation of a shift parameter of an unknown symmetric function in Gaussian white noise. We introduce a notion of semiparametric second-order efficiency and propose estimators that are semiparametrically efficient and second-order efficient in our model. These estimators are of a penalized maximum likelihood type with an appropriately chosen penalty. We argue that second-order efficiency is crucial in semiparametric problems since only the second-order terms in asymptotic expansion for the risk account for the behavior of the ``nonparametric component'' of a semiparametric procedure, and they are not dramatically smaller than the first-order terms.Comment: Published at http://dx.doi.org/10.1214/009053605000000895 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Learning by mirror averaging

    Get PDF
    Given a finite collection of estimators or classifiers, we study the problem of model selection type aggregation, that is, we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a simple recursive procedure which solves an auxiliary stochastic linear programming problem related to the original nonlinear one and constitutes a special case of the mirror averaging algorithm. We show that the aggregate satisfies sharp oracle inequalities under some general assumptions. The results are applied to several problems including regression, classification and density estimation.Comment: Published in at http://dx.doi.org/10.1214/07-AOS546 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Noisy Independent Factor Analysis Model for Density Estimation and Classification

    Get PDF
    We consider the problem of multivariate density estimation when the unknown density is assumed to follow a particular form of dimensionality reduction, a noisy independent factor analysis (IFA) model. In this model the data are generated by a number of latent independent components having unknown distributions and are observed in Gaussian noise. We do not assume that either the number of components or the matrix mixing the components are known. We show that the densities of this form can be estimated with a fast rate. Using the mirror averaging aggregation algorithm, we construct a density estimator which achieves a nearly parametric rate (log1/4 n)/√n, independent of the dimensionality of the data, as the sample size n tends to infinity. This estimator is adaptive to the number of components, their distributions and the mixing matrix. We then apply this density estimator to construct nonparametric plug-in classifiers and show that they achieve the best obtainable rate of the excess Bayes risk, to within a logarithmic factor independent of the dimension of the data. Applications of this classifier to simulated data sets and to real data from a remote sensing experiment show promising results.Financial support from the IAP research network of the Belgian government (Belgian Federal Science Policy) is gratefully acknowledged. Research of A. Samarov was partially supported by NSF grant DMS- 0505561 and by a grant from Singapore-MIT Alliance (CSB). Research of A.B. Tsybakov was partially supported by the grant ANR-06-BLAN-0194 and by the PASCAL Network of Excellence

    PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers

    Get PDF
    The aim of this paper is to generalize the PAC-Bayesian theorems proved by Catoni in the classification setting to more general problems of statistical inference. We show how to control the deviations of the risk of randomized estimators. A particular attention is paid to randomized estimators drawn in a small neighborhood of classical estimators, whose study leads to control the risk of the latter. These results allow to bound the risk of very general estimation procedures, as well as to perform model selection

    A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets

    Full text link
    In nonparametric statistical problems, we wish to find an estimator of an unknown function f. We can split its error into bias and variance terms; Smirnov, Bickel and Rosenblatt have shown that, for a histogram or kernel estimate, the supremum norm of the variance term is asymptotically distributed as a Gumbel random variable. In the following, we prove a version of this result for estimators using compactly-supported wavelets, a popular tool in nonparametric statistics. Our result relies on an assumption on the nature of the wavelet, which must be verified by provably-good numerical approximations. We verify our assumption for Daubechies wavelets and symlets, with N = 6, ..., 20 vanishing moments; larger values of N, and other wavelet bases, are easily checked, and we conjecture that our assumption holds also in those cases
    corecore