1,943 research outputs found
Could negative ion production explain the polar mesosphere winter echo (PMWE) modulation in active HF heating experiments?
Geomagnetic disturbances on ground associated with particle precipitation during SC
We have examined several cases of magnetosphere compression by solar wind pressure pulses using a set of instruments located in the noon sector of auroral zone. We have found that the increase in riometric absorption (sudden commencement absorption, SCA) occurred simultaneously with the beginning of negative or positive magnetic variations and broadband enhancement of magnetic activity in the frequency range above 0.1 Hz. Since magnetic variations were observed before the step-like increase of magnetic field at equatorial station (main impulse, MI), the negative declinations resembled the so-called preliminary impulse, PI. In this paper a mechanism for the generation of PI is introduced whereby PI's generation is linked to SCA – associated precipitation and the local enhancement of ionospheric conductivity leading to the reconstruction of the ionospheric current system prior to MI. Calculation showed that PI polarity depends on orientation of the background electric field and location of the observation point relative to ionospheric irregularity. For one case of direct measurements of electric field in the place where the ionospheric irregularity was present, the sign of calculated disturbance corresponded to the observed one. High-resolution measurements on IRIS facility and meridional chain of the induction magnetometers are utilized for the accurate timing of the impact of solar wind irregularity on the magnetopause
EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes
Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges
High resolution general purpose D-layer experiment for EISCAT incoherent scatter radars using selected set of random codes
International audienceThe ionospheric D-layer is a narrow bandwidth radar target often with a very small scattering cross section. The target autocorrelation function can be obtained by transmitting a series of relatively short coded pulses and computing the correlation between data obtained from different pulses. The spatial resolution should be as high as possible and the spatial side lobes of the codes used should be as small as possible. However, due to the short pulse repetition period (in the order of milliseconds) at any instant, the radar receives detectable scattered signals not only from the pulse illuminating the D-region but also from 3?5 ambiguous-range pulses, which makes it difficult to produce a reliable estimate near zero lag of the autocorrelation function. A new experimental solution to this measurement problem, using a selected set of 40-bit random codes with 4 µs elements giving 600 m spatial resolution is presented. The zero lag is approximated by dividing the pulse into two 20-bit codes and computing the correlation between those two pulses. The lowest altitudes of the E-layer are measured by dividing the pulse into 5 pieces of 8 bits, which allows for computation of 4 lags. In addition, coherent integration of data from four pulses is used for obtaining separately the autocorrelation function estimate for the lowest altitudes and in cases when the target contains structures with a long coherence time. Design details and responses of the experiment are given, and analysed test data are shown
Activity of perch, Perca fluviatilis L. in relation to water temperature [Translation from: Kalamies 1973(6) 4.]
Catchability and activity of Perca fluviatilis in relation to temperature is examined. The number of fish caught and water temperature during the 3 summer months was used the assess the numbers of hours of activity of perch. Parallel to the research on activity, large-scale marking was carried out to establish the periods of growth during the year
Interval valued (\in,\ivq)-fuzzy filters of pseudo -algebras
We introduce the concept of quasi-coincidence of a fuzzy interval value with
an interval valued fuzzy set. By using this new idea, we introduce the notions
of interval valued (\in,\ivq)-fuzzy filters of pseudo -algebras and
investigate some of their related properties. Some characterization theorems of
these generalized interval valued fuzzy filters are derived. The relationship
among these generalized interval valued fuzzy filters of pseudo -algebras
is considered. Finally, we consider the concept of implication-based interval
valued fuzzy implicative filters of pseudo -algebras, in particular, the
implication operators in Lukasiewicz system of continuous-valued logic are
discussed
Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1?4 Hz at <i>L</I> = 5.2
International audienceContinuous observations of fluctuations of the geomagnetic field at Sodankylä Geophysical Observatory (L = 5.2) were used for a comprehensive morphological study of the spectral resonance structure (SRS) seen in the background electromagnetic noise in the frequency range of 0.1?4.0 Hz. It is shown that the occurrence rate of SRS is higher in the nighttime than in the daytime. The occurrence rate is higher in winter than in summer. The SRS frequencies and the difference between neighbouring eigenfrequencies (the frequency scale) increase towards nighttime and decrease towards daytime. Both frequency scale and occurrence rate exhibit a clear tendency to decrease from minimum to maximum of the solar activity cycle. It is found that the occurrence rate of SRS decreases when geomagnetic activity increases. The SRS is believed to be a consequence of a resonator for Alfvén waves, which is suggested to exist in the upper ionosphere. According to the theory of the ionospheric Alfvén resonator (IAR), characteristics of SRS crucially depend on electron density in the F-layer maximum, as well as on the altitudinal scale of the density decay above the maximum.We compared the SRS morphological properties with predictions of the IAR theory. The ionospheric parameters needed for calculation were obtained from the ionosphere model (IRI-95), as well as from measurements made with the ionosonde in Sodankylä. We conclude that, indeed, the main morphological properties of SRS are explained on the basis of the IAR theory. The measured parameters of SRS can be used for improving the ionospheric models
A relativistic study of Bessel beams
We present a fully relativistic analysis of Bessel beams revealing some
noteworthy features that are not explicit in the standard description. It is
shown that there is a reference frame in which the field takes a particularly
simple form, the wave appearing to rotate in circles. The concepts of
polarization and angular momentum for Bessel beams is also reanalyzed.Comment: 11 pages, 2 fig
an ion mobility-mass spectrometry study
Coordinative halogen bonds have recently gained interest for the assembly of supramolecular capsules. Ion mobility-mass spectrometry and theoretical calculations now reveal the well-defined gas-phase structures of dimeric and hexameric [N⋯I+⋯N] halogen-bonded capsules with counterions located inside their cavities as guests. The solution reactivity of the large hexameric capsule shows the intriguing solvent-dependent equilibrium between the hexamer and an unprecedented pentameric [N⋯I+⋯N] halogen-bonded capsule, when the solvent is changed from chloroform to dichloromethane. The intrinsic flexibility of the cavitands enables this novel structure to adopt a pseudo-trigonal bipyramidal geometry with nine [N⋯I+⋯N] bonds along the edges and two pyridine binding sites uncomplexed
- …
