2,584 research outputs found

    Low lying spectrum of weak-disorder quantum waveguides

    Full text link
    We study the low-lying spectrum of the Dirichlet Laplace operator on a randomly wiggled strip. More precisely, our results are formulated in terms of the eigenvalues of finite segment approximations of the infinite waveguide. Under appropriate weak-disorder assumptions we obtain deterministic and probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas argument allows us to obtain so-called 'initial length scale decay estimates' at they are used in the proof of spectral localization using the multiscale analysis.Comment: Accepted for publication in Journal of Statistical Physics http://www.springerlink.com/content/0022-471

    Observation of New Incommensurate Magnetic Correlations at the Lower Critical Concentration for Superconductivity (x=0.05) in La(2-x)Sr(x)CuO4

    Full text link
    Neutron-scattering experiments have been performed on lightly-doped La(2-x)Sr(x)CuO4 single crystals in both the insulating (x=0.03,0.04,0.05) and superconducting (x=0.06) regions. Elastic magnetic peaks are observed at low temperatures in all samples with the maximum peak linewidth occuring at the critical concentration x_c=0.05. New incommensurate peaks are observed only at x=0.05, the positions of which are rotated by 45 degrees in reciprocal space about (pi,pi) from those observed for x>=0.06 in the superconducting phase.Comment: 5 pages, LaTeX, 4 figures include

    Systematic Study of Short Range Antiferromagnetic Order and The Spin-Glass State in Lightly Doped La2-xSrxCuO4

    Full text link
    Systematic measurements of the magnetic susceptibility were performed on single crystals of lightly doped La2-xSrxCuO4 (x=0.03, 0.04 and 0.05). For all samples the temperature dependence of the in-plane magnetic susceptibility shows typical spin-glass features with spin-glass transition temperatures Tg of 6.3K, 5.5K and 5.0K for x=0.03, 0.04 and 0.05, respectively. The canonical spin-glass order parameter extracted from the in-plane susceptibility of all the samples follows a universal scaling curve. On the other hand, the out-of-plane magnetic susceptibility deviates from Curie law below a temperature Tdv, higher than Tg. Comparing with previous neutron scattering results with an instrumental energy resolution of 0.25 meV from Wakimoto et al., the x-dependence of Tdv is qualitatively the same as that of Tel, the temperature below which the elastic magnetic scattering develops around (pi, pi). Thus, a revised magnetic phase diagram in the lightly doped region of La2-xSrxCuO4 is proposed. The Curie constants calculated from the in-plane susceptibility are independent of the Sr concentration. On the basis of the cluster spin-glass model, this fact might reflect an inhomogeneous distribution of doped holes in the CuO2 plane, such as in a stripe structure.Comment: 7 pages, 6 figure

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Get PDF
    Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. <p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. <p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. <p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL

    Wettability characteristics of an Al2O3/SiO2-based ceramic modified with CO2, Nd:YAG, excimer and high-power diode lasers

    Get PDF
    Interaction of CO2, Nd:YAG, excimer and high power diode laser (HPDL) radiation with the surface of an Al2O3/SiO2 based ceramic was found to effect significant changes in the wettability characteristics of the material. It was observed that interaction with CO2, Nd:YAG and HPDL radiation reduced the enamel contact angle from 1180 to 310, 340 and 330 respectively. In contrast, interaction with excimer laser radiation resulted an increase in the contact angle to 1210. Such changes were identified as being due to: (i) the melting and partial vitrification of the Al2O3/SiO2 based ceramic surface as a result of interaction with CO2, Nd:YAG HPDL radiation. (ii) the surface roughness of the Al2O3/SiO2 based ceramic increasing after interaction with excimer laser radiation. (iii) the surface oxygen content of the Al2O3/SiO2 based ceramic increasing after interaction with CO2, Nd:YAG and HPDL radiation. The work has shown that the wettability characteristics of the Al2O3/SiO2 based ceramic could be controlled and/or modified with laser surface treatment. In particular, whether the laser radiation had the propensity to cause surface melting. However, a wavelength dependance of the change of the wetting properties could not be deduced from the findings of this work
    corecore