99 research outputs found
Influence of shape of quantum dots on their far-infrared absorption
We investigate the effects of the shape of quantum dots on their far-infrared
absorption in an external magnetic field by a model calculation. We focus our
attention on dots with a parabolic confinement potential deviating from the
common circular symmetry, and dots having circular doughnut shape. For a
confinement where the generalized Kohn theorem does not hold we are able to
interprete the results in terms of a mixture of a center-of-mass mode and
collective modes reflecting an excitation of relative motion of the electrons.
The calculations are performed within the time-dependent Hartree approximation
and the results are compared to available experimental results.Comment: RevTeX, 16 pages with 10 postscript figures included. Submitted to
Phys. Rev.
Two-electron lateral quantum-dot molecules in a magnetic field
Laterally coupled quantum dot molecules are studied using exact
diagonalization techniques. We examine the two-electron singlet-triplet energy
difference as a function of magnetic field strength and investigate the
magnetization and vortex formation of two- and four-minima lateral quantum dot
molecules. Special attention is paid to the analysis of how the distorted
symmetry affects the properties of quantum-dot molecules.Comment: 18 pages, 26 figure
Classical double-layer atoms: artificial molecules
The groundstate configuration and the eigenmodes of two parallel
two-dimensional classical atoms are obtained as function of the inter-atomic
distance (d). The classical particles are confined by identical harmonic wells
and repel each other through a Coulomb potential. As function of d we find
several structural transitions which are of first or second order. For first
(second) order transitions the first (second) derivative of the energy with
respect to d is discontinuous, the radial position of the particles changes
discontinuously (continuously) and the frequency of the eigenmodes exhibit a
jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
Rectangular quantum dots in high magnetic fields
We use density-functional methods to study the effects of an external
magnetic field on two-dimensional quantum dots with a rectangular hard-wall
confining potential. The increasing magnetic field leads to spin polarization
and formation of a highly inhomogeneous maximum-density droplet at the
predicted magnetic field strength. At higher fields, we find an oscillating
behavior in the electron density and in the magnetization of the dot. We
identify a rich variety of phenomena behind the periodicity and analyze the
complicated many-electron dynamics, which is shown to be highly dependent on
the shape of the quantum dot.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring
The effects of electron-electron interaction of a two-electron nanoring on
the energy levels and far-infrared (FIR) spectroscopy have been investigated
based on a model calculation which is performed within the exactly numerical
diagonalization. It is found that the interaction changes the energy spectra
dramatically, and also shows significant influence on the FIR spectroscopy. The
crossings between the lowest spin-singlet and triplet states induced by the
coulomb interaction are clearly revealed. Our results are related to the
experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223
(2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15
Short-range interactions in a two-electron system: energy levels and magnetic properties
The problem of two electrons in a square billiard interacting via a
finite-range repulsive Yukawa potential and subjected to a constant magnetic
field is considered. We compute the energy spectrum for both singlet and
triplet states, and for all symmetry classes, as a function of the strength and
range of the interaction and of the magnetic field. We show that the
short-range nature of the potential suppresses the formation of ``Wigner
molecule'' states for the ground state, even in the strong interaction limit.
The magnetic susceptibility shows low-temperature paramagnetic peaks
due to exchange induced singlet-triplet oscillations. The position, number and
intensity of these peaks depend on the range and strength of the interaction.
The contribution of the interaction to the susceptibility displays paramagnetic
and diamagnetic phases as a function of .Comment: 12 pages,6 figures; to appear in Phys. Rev.
Electronic structure of rectangular quantum dots
We study the ground state properties of rectangular quantum dots by using the
spin-density-functional theory and quantum Monte Carlo methods. The dot
geometry is determined by an infinite hard-wall potential to enable comparison
to manufactured, rectangular-shaped quantum dots. We show that the electronic
structure is very sensitive to the deformation, and at realistic sizes the
non-interacting picture determines the general behavior. However, close to the
degenerate points where Hund's rule applies, we find spin-density-wave-like
solutions bracketing the partially polarized states. In the
quasi-one-dimensional limit we find permanent charge-density waves, and at a
sufficiently large deformation or low density, there are strongly localized
stable states with a broken spin-symmetry.Comment: 8 pages, 9 figures, submitted to PR
Holographic Conductivity in Disordered Systems
The main purpose of this paper is to holographically study the behavior of
conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane
systems in AdS/CFT with random closed string and open string background fields.
We give a prescription of calculating the DC conductivity holographically in
disordered systems. In particular, we find an analytical formula of the
conductivity in the presence of codimension one randomness. We also
systematically study the AC conductivity in various probe brane setups without
disorder and find analogues of Mott insulators.Comment: 43 pages, 28 figures, latex, references added, minor correction
Comparison of active treatments for impaired glucose regulation : a Salford Royal Foundation Trust and Hitachi collaboration (CATFISH): study protocol for a randomized controlled trial
BACKGROUND: Diabetes is highly prevalent and contributes to significant morbidity and mortality worldwide. Behaviour change interventions that target health and lifestyle factors associated with the onset of diabetes can delay progression to diabetes, but many approaches rely on intensive one-to-one contact by specialists. Health coaching is an approach based on motivational interviewing that can potentially deliver behaviour change interventions by non-specialists at a larger scale. This trial protocol describes a randomized controlled trial (CATFISH) that tests whether a web-enhanced telephone health coaching intervention (IGR3) is more acceptable and efficient than a telephone-only health coaching intervention (IGR2) for people with prediabetes (impaired glucose regulation). METHODS: CATFISH is a two-parallel group, single-centre individually randomized controlled trial. Eligible participants are patients aged ≥18 years with impaired glucose regulation (HbA1c concentration between 42 and 47 mmol/mol), have access to a telephone and home internet and have been referred to an existing telephone health coaching service at Salford Royal NHS Foundation Trust, Salford, UK. Participants who give written informed consent will be randomized remotely (via a clinical trials unit) to either the existing pathway (IGR2) or the new web-enhanced pathway (IGR3) for 9 months. The primary outcome measure is patient acceptability at 9 months, determined using the Client Satisfaction Questionnaire. Secondary outcome measures at 9 months are: cost of delivery of IGR2 and IGR3, mental health, quality of life, patient activation, self-management, weight (kg), HbA1c concentration, and body mass index. All outcome measures will be analyzed on an intention-to-treat basis. A qualitative process evaluation will explore the experiences of participants and providers with a focus on understanding usability of interventions, mechanisms of behaviour change, and impact of context on delivery and user acceptability. Qualitative data will be analyzed using Framework. DISCUSSION: The CATFISH trial will provide a pragmatic assessment of whether a web-based information technology platform can enhance acceptability of a telephone health coaching intervention for people with prediabetes. The data will prove critical in understanding the role of web applications to improve engagement with evidence-based approaches to preventing diabetes. TRIAL REGISTRATION: ISRCTN16534814 . Registered on 7 February 2016
Prostaglandin D2-supplemented “functional eicosanoid testing and typing” assay with peripheral blood leukocytes as a new tool in the diagnosis of systemic mast cell activation disease: an explorative diagnostic study
Background: Systemic mast cell activation disease (MCAD) is characterized by an enhanced release of mast cell-derived mediators, including eicosanoids, which induce a broad spectrum of clinical symptoms. Accordingly, the diagnostic algorithm of MCAD presupposes the proof of increased mast cell mediator release, but only a few mediators are currently established as routine laboratory parameters. We thus initiated an explorative study to evaluate in vitro typing of individual eicosanoid pattern of peripheral blood leukocytes (PBLs) as a new diagnostic tool in MCAD. Methods: Using the “functional eicosanoid testing and typing” (FET) assay, we investigated the balance (i.e. the complex pattern of formation, release and mutual interaction) of prostaglandin E2 (PGE2) and peptido-leukotrienes (pLT) release from PBLs of 22 MCAD patients and 20 healthy individuals. FET algorithms thereby consider both basal and arachidonic acid (AA)-, acetylsalicylic acid (ASA)-, and substance P (SP)-triggered release of PGE2 and pLT. The FET assay was further supplemented by analyzing prostaglandin D2 (PGD2), as mast cell-specific eicosanoid. Results: We observed marked PGE2-pLT imbalances for PBLs of MCAD patients, as indicated by a markedly enhanced mean FET value of 1.75 ± 0.356 (range: 1.14–2.36), compared to 0.53 ± 0.119 (range: 0.36-0.75) for healthy individuals. In addition, mean PGD2 release from PBLs of MCAD patients was significantly, 6.6-fold higher than from PBLs of healthy individuals (946 ± 302.2 pg/ml versus 142 ± 47.8 pg/ml; P < 0.001). In contrast to healthy individuals, PGD2 release from PBLs of MCAD patients was markedly triggered by SP (mean: 1896 ± 389.7 pg/ml; P < 0.001), whereas AA and ASA caused individually varying effects on both PGD2 and pLT release. Conclusions: The new in-vitro FET assay, supplemented with analysis of PGD2, demonstrated that the individual patterns of eicosanoid release from PBLs can unambiguously distinguish MCAD patients from healthy individuals. Notably, in our analyses, the FET value and both basal and triggered PGD2 levels were not significantly affected by MCAD-specific medication. Thus, this approach may serve as an in-vitro diagnostic tool to estimate mast cell activity and to support individualized therapeutic decision processes for patients suffering from MCAD
- …
