136 research outputs found

    o-minimal Flows on Abelian Varieties

    Get PDF
    Let A be an abelian variety over CC of dimension n and π:Cn⟶Aπ:Cn⟶A be the complex uniformization. Let X be an unbounded subset of CnCn definable in a suitable o-minimal structure. We give a description of the Zariski closure of π(X)π(X)

    o-minimal Flows on Abelian Varieties

    Get PDF
    Let A be an abelian variety over CC of dimension n and π:Cn⟶Aπ:Cn⟶A be the complex uniformization. Let X be an unbounded subset of CnCn definable in a suitable o-minimal structure. We give a description of the Zariski closure of π(X)π(X)

    Algebraic flows on Shimura varieties

    Get PDF
    In this paper we formulate some conjectures about algebraic flows on Shimura varieties. In the first part of the paper we prove the `logarithmic Ax-Lindemann theorem'. We then prove a result concerning the topological closure of the images of totally geodesic subvarieties of symmetric spaces uniformising Shimura varieties. This is a special case of our conjectures

    Incipient Wigner Localization in Circular Quantum Dots

    Full text link
    We study the development of electron-electron correlations in circular quantum dots as the density is decreased. We consider a wide range of both electron number, N<=20, and electron gas parameter, r_s<18, using the diffusion quantum Monte Carlo technique. Features associated with correlation appear to develop very differently in quantum dots than in bulk. The main reason is that translational symmetry is necessarily broken in a dot, leading to density modulation and inhomogeneity. Electron-electron interactions act to enhance this modulation ultimately leading to localization. This process appears to be completely smooth and occurs over a wide range of density. Thus there is a broad regime of ``incipient'' Wigner crystallization in these quantum dots. Our specific conclusions are: (i) The density develops sharp rings while the pair density shows both radial and angular inhomogeneity. (ii) The spin of the ground state is consistent with Hund's (first) rule throughout our entire range of r_s for all 4<N<20. (iii) The addition energy curve first becomes smoother as interactions strengthen -- the mesoscopic fluctuations are damped by correlation -- and then starts to show features characteristic of the classical addition energy. (iv) Localization effects are stronger for a smaller number of electrons. (v) Finally, the gap to certain spin excitations becomes small at the strong interaction (large r_s) side of our regime.Comment: 14 pages, 12 figure

    Algebraic flows on abelian varieties

    Get PDF
    Let A be an abelian variety. The abelian Ax–Lindemann theorem shows that the Zariski closure of an algebraic flow in A is a translate of an abelian subvariety of A. The paper discusses some conjectures on the usual topological closure of an algebraic flow in A. The main result is a proof of these conjectures when the algebraic flow is given by an algebraic curve

    Chaos and Interacting Electrons in Ballistic Quantum Dots

    Full text link
    We show that the classical dynamics of independent particles can determine the quantum properties of interacting electrons in the ballistic regime. This connection is established using diagrammatic perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orbital magnetism is greatly enhanced over the Landau susceptibility by the combined effects of interactions and finite size. The presence of families of periodic orbits in regular systems makes their susceptibility parametrically larger than that of chaotic systems, a difference which emerges from correlation terms.Comment: 4 pages, revtex, includes 3 postscript fig

    Integrability and Disorder in Mesoscopic Systems: Application to Orbital Magnetism

    Get PDF
    We present a semiclassical theory of weak disorder effects in small structures and apply it to the magnetic response of non-interacting electrons confined in integrable geometries. We discuss the various averaging procedures describing different experimental situations in terms of one- and two-particle Green functions. We demonstrate that the anomalously large zero-field susceptibility characteristic of clean integrable structures is only weakly suppressed by disorder. This damping depends on the ratio of the typical size of the structure with the two characteristic length scales describing the disorder (elastic mean-free-path and correlation length of the potential) in a power-law form for the experimentally relevant parameter region. We establish the comparison with the available experimental data and we extend the study of the interplay between disorder and integrability to finite magnetic fields.Comment: 38 pages, Latex, 7 Postscript figures, 1 table, to appear in Jour. Math. Physics 199

    Interaction-Induced Magnetization of the Two-Dimensional Electron Gas

    Full text link
    We consider the contribution of electron-electron interactions to the orbital magnetization of a two-dimensional electron gas, focusing on the ballistic limit in the regime of negligible Landau-level spacing. This regime can be described by combining diagrammatic perturbation theory with semiclassical techniques. At sufficiently low temperatures, the interaction-induced magnetization overwhelms the Landau and Pauli contributions. Curiously, the interaction-induced magnetization is third-order in the (renormalized) Coulomb interaction. We give a simple interpretation of this effect in terms of classical paths using a renormalization argument: a polygon must have at least three sides in order to enclose area. To leading order in the renormalized interaction, the renormalization argument gives exactly the same result as the full treatment.Comment: 11 pages including 4 ps figures; uses revtex and epsf.st
    corecore