205 research outputs found

    Efficient dynamical nuclear polarization in quantum dots: Temperature dependence

    Full text link
    We investigate in micro-photoluminescence experiments the dynamical nuclear polarization in individual InGaAs quantum dots. Experiments carried out in an applied magnetic field of 2T show that the nuclear polarization achieved through the optical pumping of electron spins is increasing with the sample temperature between 2K and 55K, reaching a maximum of about 50%. Analysing the dependence of the Overhauser shift on the spin polarization of the optically injected electron as a function of temperature enables us to identify the main reasons for this increase.Comment: 5 pages, 3 figure

    Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields

    Get PDF
    In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale is substantial --tens of teslas or more-- due to heavy carrier masses and huge exciton binding energies. Here we report absorption spectroscopy of monolayer MoS2_2, MoSe2_2, MoTe2_2, and WS2_2 in very high magnetic fields to 91~T. We follow the diamagnetic shifts and valley Zeeman splittings of not only the exciton's 1s1s ground state but also its excited 2s2s, 3s3s, ..., nsns Rydberg states. This provides a direct experimental measure of the effective (reduced) exciton masses and dielectric properties. Exciton binding energies, exciton radii, and free-particle bandgaps are also determined. The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers. These results provide essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.Comment: updated; now also including data on MoTe2. Accepted & in press, Nature Commu

    Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy

    Full text link
    We report optical orientation experiments in individual, strain free GaAs quantum dots in AlGaAs grown by droplet epitaxy. Circularly polarized optical excitation yields strong circular polarization of the resulting photoluminescence at 4K. Optical injection of spin polarized electrons into a dot gives rise to dynamical nuclear polarization that considerably changes the exciton Zeeman splitting (Overhauser shift). We show that the created nuclear polarization is bistable and present a direct measurement of the build-up time of the nuclear polarization in a single GaAs dot in the order of one second.Comment: 7 pages, 3 figure

    Exciton dynamics in WSe2 bilayers

    Full text link
    We investigate exciton dynamics in 2H-WSe2 bilayers in time-resolved photoluminescence (PL) spectroscopy. Fast PL emission times are recorded for both the direct exciton with τD\tau_{D} ~ 3 ps and the indirect optical transition with τi\tau_{i} ~ 25 ps. For temperatures between 4 to 150 K τi\tau_{i} remains constant. Following polarized laser excitation, we observe for the direct exciton transition at the K point of the Brillouin zone efficient optical orientation and alignment during the short emission time τD\tau_{D}. The evolution of the direct exciton polarization and intensity as a function of excitation laser energy is monitored in PL excitation (PLE) experiments.Comment: 4 pages, 3 figure

    Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots

    Full text link
    We report strong heavy hole-light mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fitting the polar diagram of the emission with simple analytical expressions obtained from k\cdotp theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.Comment: 4 pages, 2 figure

    Electron spin quantum beats in positively charged quantum dots: nuclear field effects

    Full text link
    We have studied the electron spin coherence in an ensemble of positively charged InAs/GaAs quantum dots. In a transverse magnetic field, we show that two main contributions must be taken into account to explain the damping of the circular polarization oscillations. The first one is due to the nuclear field fluctuations from dot to dot experienced by the electron spin. The second one is due to the dispersion of the transverse electron Lande g-factor, due to the inherent inhomogeneity of the system, and leads to a field dependent contribution to the damping. We have developed a model taking into account both contributions, which is in good agreement with the experimental data. This enables us to extract the pure contribution to dephasing due to the nuclei.Comment: 10 pages, 6 figure

    Exciton states in monolayer MoSe2: impact on interband transitions

    Full text link
    We combine linear and non-linear optical spectroscopy at 4K with ab initio calculations to study the electronic bandstructure of MoSe2 monolayers. In 1-photon photoluminescence excitation (PLE) and reflectivity we measure a separation between the A- and B-exciton emission of 220 meV. In 2-photon PLE we detect for the A- and B-exciton the 2p state 180meV above the respective 1s state. In second harmonic generation (SHG) spectroscopy we record an enhancement by more than 2 orders of magnitude of the SHG signal at resonances of the charged exciton and the 1s and 2p neutral A- and B-exciton. Our post-Density Functional Theory calculations show in the conduction band along the KΓK-\Gamma direction a local minimum that is energetically and in k-space close to the global minimum at the K-point. This has a potentially strong impact on the polarization and energy of the excitonic states that govern the interband transitions and marks an important difference to MoS2 and WSe2 monolayers.Comment: 8 pages, 3 figure

    Dark-bright mixing of interband transitions in symmetric semiconductor quantum dots

    Full text link
    In photoluminescence spectra of symmetric [111] grown GaAs/AlGaAs quantum dots in longitudinal magnetic fields applied along the growth axis we observe in addition to the expected bright states also nominally dark transitions for both charged and neutral excitons. We uncover a strongly non-monotonous, sign changing field dependence of the bright neutral exciton splitting resulting from the interplay between exchange and Zeeman effects. Our theory shows quantitatively that these surprising experimental results are due to magnetic-field-induced \pm 3/2 heavy-hole mixing, an inherent property of systems with C_3v point-group symmetry.Comment: 5 pages, 3 figure

    Bistability of the Nuclear Polarisation created through optical pumping in InGaAs Quantum Dots

    Full text link
    We show that optical pumping of electron spins in individual InGaAs quantum dots leads to strong nuclear polarisation that we measure via the Overhauser shift (OHS) in magneto-photoluminescence experiments between 0 and 4T. We find a strongly non-monotonous dependence of the OHS on the applied magnetic field, with a maximum nuclear polarisation of 40% for intermediate magnetic fields. We observe that the OHS is larger for nuclear fields anti-parallel to the external field than in the parallel configuration. A bistability in the dependence of the OHS on the spin polarization of the optically injected electrons is found. All our findings are qualitatively understood with a model based on a simple perturbative approach.Comment: Phys Rev B (in press
    corecore