7,005 research outputs found

    Simple and effective method to lock buoy position to ocean currents

    Get PDF
    Window-shade drogue, used with drifting buoys to keep them moving with current at speed as close to that of current as possible, has drag coefficient of 1.93 compared to maximum of 1.52 for previous drogues. It is remarkably simple to construct, use, and store

    An overview of large wind turbine tests by electric utilities

    Get PDF
    A summary of recent plants and experiences on current large wind turbine (WT) tests being conducted by electric utilities is provided. The test programs discussed do not include federal research and development (R&D) programs, many of which are also being conducted in conjunction with electric utilities. The information presented is being assembled in a project, funded by the Electric Power Research Institute (EPRI), the objective of which is to provide electric utilities with timely summaries of test performance on key large wind turbines. A summary of key tests, test instrumentation, and recent results and plans is given. During the past year, many of the utility test programs initiated have encountered test difficulties that required specific WT design changes. However, test results to date continue to indicate that long-term machine performance and cost-effectiveness are achievable

    Thermal conductivity of heterogeneous mixtures and lunar soils

    Get PDF
    The theoretical evaluation of the effective thermal conductivity of granular materials is discussed with emphasis upon the heat transport properties of lunar soil. The following types of models are compared: probabilistic, parallel isotherm, stochastic, lunar, and a model based on nonlinear heat flow system synthesis

    Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility

    Full text link
    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal of Instrumentation (JINST), including corrected Fig. 8b

    Vortex lattice stability in the SO(5) model

    Full text link
    We study the energetics of superconducting vortices in the SO(5) model for high-TcT_c materials proposed by Zhang. We show that for a wide range of parameters normally corresponding to type II superconductivity, the free energy per unit flux \FF(m) of a vortex with mm flux quanta is a decreasing function of mm, provided the doping is close to its critical value. This implies that the Abrikosov lattice is unstable, a behaviour typical of type I superconductors. For dopings far from the critical value, \FF(m) can become very flat, indicating a less rigid vortex lattice, which would melt at a lower temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure

    Phase Diagram of CeCoIn_5 in the Vicinity of H_{c2} as Determined by NMR

    Full text link
    We report ^{115}In nuclear magnetic resonance (NMR) measurements in the heavy-fermion superconductor CeCoIn_5 as a function of temperature in different magnetic fields applied parallel to the (a^,b^)(\hat a, \hat b) plane. The measurements probe a part of the phase diagram in the vicinity of the superconducting critical field H_{c2} where a possible inhomogeneous superconducting state, Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), is stabilized. We have identified clear NMR signatures of two phase transitions occurring in this part of the phase diagram. The first order phase transitions are characterized by the sizable discontinuity of the shift. We find that a continuous second order phase transition from the superconducting to the FFLO state occurs at temperature below which the shift becomes temperature independent. We have compiled the first phase diagram of CeCoIn_5 in the vicinity of H_{c2} from NMR data and found that it is in agreement with the one determined by thermodynamic measurements.Comment: 4 pages, submitted to Proceedings of SCES'0

    Background risk of breast cancer and the association between physical activity and mammographic density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    Interaction between vortices in models with two order parameters

    Get PDF
    The interaction energy and force between widely separated strings is analyzed in a field theory having applications to superconducting cosmic strings, the SO(5) model of high-temperature superconductivity, and solitons in nonlinear optics. The field theory has two order parameters, one of which is broken in the vacuum (giving rise to strings), the other of which is unbroken in the vacuum but which could nonetheless be broken in the core of the string. If this does occur, there is an effect on the energetics of widely separated strings. This effect is important if the length scale of this second order parameter is longer than that of the other fields in the problem.Comment: 11 pages, 3 figures. Minor changes in the text. Accepted for publication in Phys. Rev.

    Characterization of an Ionization Readout Tile for nEXO

    Full text link
    A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} ×\times 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207^{207}Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E\sigma/E=5.5\% is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe
    corecore