5,822 research outputs found
The first version Buffered Large Analog Bandwidth (BLAB1) ASIC for high luminosity collider and extensive radio neutrino detectors
Future detectors for high luminosity particle identification and ultra high
energy neutrino observation would benefit from a digitizer capable of recording
sensor elements with high analog bandwidth and large record depth, in a
cost-effective, compact and low-power way. A first version of the Buffered
Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons
learned from the development of the Large Analog Bandwidth Recorder and
Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has
been very successful and forms the basis of a generation of new, large-scale
radio neutrino detectors, its limited sampling depth is a major drawback. A
prototype has been designed and fabricated with 65k deep sampling at
multi-GSa/s operation. We present test results and directions for future
evolution of this sampling technique.Comment: 15 pages, 26 figures; revised, accepted for publication in NIM
High Voltage CMOS Control Interface for Astronomy - Grade Charged Coupled Devices
The Pan-STARRS telescope consists of an array of smaller mirrors viewed by a
Gigapixel arrays of CCDs. These focal planes employ Orthogonal Transfer CCDs
(OTCCDs) to allow on-chip image stabilization. Each OTCCD has advanced logic
features that are controlled externally. A CMOS Interface Device for High
Voltage has been developed to provide the appropiate voltage signal levels from
a readout and control system designated STARGRASP. OTCCD chip output levels
range from -3.3V to 16.7V, with two different output drive strenghts required
depending on load capacitance (50pF and 1000pF), with 24mA of drive and a rise
time on the order of 100ns. Additional testing ADC structures have been
included in this chip to evaluate future functional additions for a next
version of the chip.Comment: 13 pages, 17 gigure
Estimates of Cl atom concentrations and hydrocarbon kinetic reactivity in surface air at Appledore Island, Maine (USA), during International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals
Average hydroxyl radical (OH) to chlorine atom (Cl·) ratios ranging from 45 to 119 were determined from variability‐lifetime relationships for selected nonmethane hydrocarbons (NMHC) in surface air from six different transport sectors arriving at Appledore Island, Maine, during July 2004. Multiplying these ratios by an assumed average OH concentration of 2.5 × 106 cm−3 yielded estimates of Cl· concentrations of 2.2 to 5.6 × 104 cm−3. Summed reaction rates of methane and more than 30 abundant NMHCs with OH and Cl· suggest that Cl· reactions increased the kinetic reactivity of hydrocarbons by 16% to 30% over that due to OH alone in air associated with the various transport sectors. Isoprene and other abundant biogenic alkenes were the most important hydrocarbon contributors after methane to overall kinetic reactivity
Magnetic states of linear defects in graphene monolayers: effects of strain and interaction
The combined effects of defect-defect interaction and of uniaxial or biaxial
strains of up to 10\% on the development of magnetic states on the
defect-core-localized quasi-one-dimensional electronic states generated by the
so-called 558 linear extended defect in graphene monolayers are investigated by
means of {\it ab initio} calculations. Results are analyzed on the basis of the
heuristics of the Stoner criterion. We find that conditions for the emergence
of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel
strains (along the defect direction) at both limits of isolated and interacting
558 defects. Parallel strains are shown to lead to two cooperative effects that
favor the emergence of itinerant magnetism: enhancement of the DOS of the
resonant defect states in the region of the Fermi level and tuning of the Fermi
level to the maximum of the related DOS peak. A perpendicular strain is
likewise shown to enhance the DOS of the defect states, but it also effects a
detunig of the Fermi level that shifts away from the maximum of the DOS of the
defect states, which inhibts the emergence of magnetic states. As a result,
under biaxial strains the stabilization of a magnetic state depends on the
relative magnitudes of the two components of strain.Comment: 9 pages 8 figure
Nanoparticle growth following photochemical α‐ and β‐pinene oxidation at Appledore Island during International Consortium for Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals 2004
Nanoparticle events were observed 48 times in particle size distributions at Appledore Island during the International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens on the Isles of Shoals (ICARTT/CHAiOS) field campaign from 2 July to 12 August of 2004. Eighteen of the nanoparticle events showed particle growth and occurred during mornings when peaks in mixing ratios of α‐ and β‐pinene and ozone made production of condensable products from photochemical oxidation probable. Many pollutants and other potential precursors for aerosol formation were also at elevated mixing ratios during these events, including NO, HNO3, NH3, HCl, propane, and several other volatile organic carbon compounds. There were no consistent changes in particle composition, although both submicron and supermicron particles included high maximum concentrations of methane sulfonate, sulfate, iodide, nitrate, and ammonium during these events. Nanoparticle growth continued over several hours with a nearly linear rate of increase of diameter with time. The observed nanoparticle growth rates varied from 3 to 13 nm h−1. Apparent nanoparticle aerosol mass fractions (yields) were estimated to range from less than 0.0005 to almost 1 using α‐ and β‐pinene as the presumed particle source. These apparent high aerosol mass fractions (yields) at low changes in aerosol mass are up to two orders of magnitude greater than predictions from extrapolated laboratory parameterizations and may provide a more accurate assessment of secondary organic aerosol formation for estimating the growth of nanoparticles in global models
TARGET: A Digitizing And Trigger ASIC For The Cherenkov Telescope Array
The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA)
will feature multiple types of imaging atmospheric Cherenkov telescopes, each
with thousands of pixels. To be affordable, camera concepts for these
telescopes have to feature low cost per channel and at the same time meet the
requirements for CTA in order to achieve the desired scientific goals. We
present the concept of the TeV Array Readout Electronics with GSa/s sampling
and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be
used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov
Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the
Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the
latest version of this readout concept the sampling and trigger parts are split
into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input
channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k
sample deep buffer for each channel and on-demand digitization and transmission
of waveforms with typical spans of ~100 ns. The trigger ASIC, T5TEA, provides 4
low voltage differential signal (LVDS) trigger outputs and can generate a
pedestal voltage independently for each channel. Trigger signals are generated
by T5TEA based on the analog sum of the input in four independent groups of
four adjacent channels and compared to a threshold set by the user. Thus, T5TEA
generates four LVDS trigger outputs, as well as 16 pedestal voltages fed to
TARGET C independently for each channel. We show preliminary results of the
characterization and testing of TARGET C and T5TEA.Comment: 6 pages, 8 figures, Proceedings of the 6th International Symposium on
High-Energy Gamma-Ray Astronomy (Gamma2016
Myeloid cells in tumor inflammation
Bone marrow derived myeloid cells progressively accumulate in tumors, where they establish an inflammatory microenvironment that is favorable for tumor growth and spread. These cells are comprised primarily of monocytic and granulocytic myeloid derived suppressor cells (MDSCs) or tumor-associated macrophages (TAMs), which are generally associated with a poor clinical outcome. MDSCs and TAMs promote tumor progression by stimulating immunosuppression, neovascularization, metastasis and resistance to anti-cancer therapy. Strategies to target the tumor-promoting functions of myeloid cells could provide substantial therapeutic benefit to cancer patients
A Scintillating Fiber Hodoscope for a Bremstrahlung Luminosity Monitor at an ElectronPositron Collider
The performance of a scintillating fiber (2mm diameter) position sensitive
detector ( cm active area) for the single bremstrahlung
luminosity monitor at the VEPP-2M electron-positron collider in Novosibirsk,
Russia is described. Custom electronics is triggered by coincident hits in the
X and Y planes of 24 fibers each, and reduces 64 PMT signals to a 10 bit (X,Y)
address. Hits are accumulated (10 kHz) in memory and display (few Hz) the
VEPP-2M collision vertex. Fitting the strongly peaked distribution ( 3-4
mm at 1.6m from the collision vertex of VEPP-2M ) to the expected QED angular
distribution yields a background in agreement with an independent determination
of the VEPP-2M luminosity.Comment: LaTeX with REVTeX style and options: multicol,aps. 8 pages,
postscript figures separate from text. Accepted in Review of Scientific
Instruments (~ Aug 1996
An imaging time-of-propagation system for charged particle identification at a super B factory
Super B factories that will further probe the flavor sector of the Standard
Model and physics beyond will demand excellent charged particle identification
(PID), particularly K/pi separation, for momenta up to 4 GeV/c, as well as the
ability to operate under beam backgrounds significantly higher than current B
factory experiments. We describe an Imaging Time-of-Propagation (iTOP) detector
which shows significant potential to meet these requirements. Photons emitted
from charged particle interactions in a Cerenkov radiator bar are internally
reflected to the end of the bar, where they are collected on a compact image
plane using photodetectors with fine spatial segmentation in two dimensions.
Precision measurements of photon arrival time are used to enhance the two
dimensional imaging, allowing the system to provide excellent PID capabilities
within a reduced detector envelope. Results of the ongoing optimization of the
geometric and physical properties of such a detector are presented, as well as
simulated PID performance. Validation of simulations is being performed using a
prototype in a cosmic ray test stand at the University of Hawaii.Comment: 3 pages, 5 figures, submitted to TIPP09 proceeding
- …
