10 research outputs found

    Investigating the Effect of Melittin Peptide in Preventing Biofilm Formation, Adhesion and Expression of Virulence Genes in Listeria monocytogenes

    No full text
    Listeria monocytogenes is a notable food-borne pathogen that has the ability to create biofilms on different food processing surfaces, making it more resilient to disinfectants and posing a greater risk to human health. This study assessed melittin peptide's anti-biofilm and anti-pathogenicity effects on L. monocytogenes ATCC 19115. Melittin showed minimum inhibitory concenteration (MIC) of 100 μg/mL against this strain and scanning electron microscopy images confirmed its antimicrobial efficacy. The OD measurement demonstrated that melittin exhibited a strong proficiency in inhibiting biofilms and disrupting pre-formed biofilms at concentrations ranging from 1/8MIC to 2MIC and this amount was 92.59 ± 1.01% to 7.17 ± 0.31% and 100% to 11.50 ± 0.53%, respectively. Peptide also reduced hydrophobicity and self-aggregation of L. monocytogenes by 35.25% and 14.38% at MIC. Melittin also significantly reduced adhesion to HT-29 and Caco-2 cells by 61.33% and 59%, and inhibited invasion of HT-29 and Caco-2 cells by 49.33% and 40.66% for L. monocytogenes at the MIC value. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) revealed melittin's impact on gene expression, notably decreasing inlB (44%) and agrA (45%) gene expression in L. monocytogenes. flaA and hly genes also exhibited reduced expression. Also, significant changes were observed in sigB and prfA gene expression. These results underscore melittin's potential in combating bacterial infections and biofilm-related challenges in the food industry

    The Effect of Plasma-Activated Water Combined with Rosemary Extract (Rosmarinus officinalis L.) on the Physicochemical Properties of Frankfurter Sausage during Storage

    No full text
    This study investigated the impact of plasma-activated water (PAW) and rosemary extract on the bacterial inactivation and quality attributes of Frankfurter sausages during a 6-day storage period. The antibacterial activity, total phenol content (TPC), and total flavonoid content (TFC) of the rosemary extract were evaluated. The TPC of the rosemary extract was 89.45 mg gallic acid/g dry weight, while the TFC was 102.3 mg QE/g dry weight. Even at low concentrations, the rosemary extract effectively inhibited the growth of all the tested pathogens using the Well Diffusion Agar method (WDA). The sausages were treated with different concentrations of PAW and rosemary extract and stored for 1 and 6 days. Sample B (100% rosemary extract + PAW treatment) showed the greatest reduction in microbial load and was selected for further analysis. Throughout the storage period, Sample B exhibited no significant changes in pH, moisture content, textural parameters, or sensory evaluation compared to the control group. However, the hardness and color parameters (L*, a*) of Sample B decreased, while the TBARS value increased after 6 days of storage. The combination of PAW and rosemary extract, particularly Sample B, effectively inhibited bacterial growth in the Frankfurter sausages without compromising most quality attributes. Some changes in hardness, color, and lipid oxidation were observed over the extended storage period
    corecore