1,198 research outputs found

    Quantitative measurement of orbital angular momentum in electron microscopy

    Full text link
    Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focussed on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multi-pinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.Comment: 6 pages, 5 figure

    Symmetry-constrained electron vortex propagation

    Full text link
    Electron vortex beams hold great promise for development in transmission electron microscopy, but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM and topology. We present multiple simulations, alongside experimental data to study the behaviour of a variety of electron vortex beams after interacting with apertures of different symmetries, and investigate the effect on their OAM and vortex structure, both in the far-field and under free-space propagation.Comment: 11 page

    Exploiting lens aberrations to create electron vortex beams

    Full text link
    A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condensor plane. Experimental results are found to be in good agreement with simulations.Comment: 5 pages, 4 figure

    Sub-nanometer free electrons with topological charge

    Full text link
    The holographic mask technique is used to create freely moving electrons with quantized angular momentum. With electron optical elements they can be focused to vortices with diameters below the nanometer range. The understanding of these vortex beams is important for many applications. Here we present a theory of focused free electron vortices. The agreement with experimental data is excellent. As an immediate application, fundamental experimental parameters like spherical aberration and partial coherence are determined.Comment: 4 pages, 5 figure

    Electronically coupled complementary interfaces between perovskite band insulators

    Full text link
    Perovskite oxides exhibit a plethora of exceptional electronic properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the two wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either high-mobility electron conductors or insulating, depending on the atomic stacking sequences. In the latter case they are conceivably positively charged. For device applications, as well as for basic understanding of the interface conduction mechanism, it is important to investigate the electronic coupling of closely-spaced complementary interfaces. Here we report the successful realization of such electronically coupled complementary interfaces in SrTiO3 - LaAlO3 thin film multilayer structures, in which the atomic stacking sequence at the interfaces was confirmed by quantitative transmission electron microscopy. We found a critical separation distance of 6 perovskite unit cell layers, corresponding to approximately 2.3 nm, below which a decrease of the interface conductivity and carrier density occurs. Interestingly, the high carrier mobilities characterizing the separate electron doped interfaces are found to be maintained in coupled structures down to sub-nanometer interface spacing

    Theory and applications of free-electron vortex states

    Full text link
    Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.Comment: 87 pages, 34 figure

    Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure

    Get PDF
    Tropical forests are currently experiencing large-scale structural changes, including an increase in liana abundance and biomass. Higher liana abundance results in reduced tree growth and increased tree mortality, possibly playing an important role in the global carbon cycle. Despite the large amount of data currently available on lianas, there are not many quantitative studies on the influence of lianas on the vertical structure of the forest. We study the potential of terrestrial laser scanning (TLS) in detecting and quantifying changes in forest structure after liana cutting using a small scale removal experiment in two plots (removal plot and non-manipulated control plot) in a secondary forest in Panama. We assess the structural changes by comparing the vertical plant profiles and Canopy Height Models (CHMs) between pre-cut and post-cut scans in the removal plot. We show that TLS is able to detect the local structural changes in all the vertical strata of the plot caused by liana removal. Our study demonstrates the reproducibility of the TLS derived metrics for the same location confirming the applicability of TLS for continuous monitoring of liana removal plots to study the long-term impacts of lianas on forest structure. We therefore recommend to use TLS when implementing new large scale liana removal experiments, as the impact of lianas on forest structure will determine the aboveground competition for light between trees and lianas, which has important implications for the global carbon cycle

    Selective attraction of marine bacterivorous nematodes to their bacterial food

    Get PDF
    This paper explores the role of selective attraction to food in determining the spatial (micro)distribution of closely related nematode species. The attractiveness of 3 different bacterial strains to 4 species of Monhysteridae, Diplolaimelloides meyli, Diplolaimella dievengatensis, Monhystera sp. and Geomonhystera disjuncta, was studied in a multiple choice design. In our study area, the 4 nematode species considered are associated with Spartina anglica detritus decay and have partially overlapping microhabitat preferences. As they all belong to the same feeding guild, they are potential competitors for food. Each of the 4 nematode species was attracted to the bacterial strain B1, but important interspecific differences were noted in the nematodes' response to live or heat-killed bacteria, to bacteria at different tell densities or of different age, and to the filtered supernatant of B1 culture. While the responses of D. meyli to the Gram-positive bacteria Halobacillus trueperi and to the Gramnegative Escherichia coli were similar, D. dievengatensis and Monhystera sp, were preferentially attracted to H. trueperi and E. coli, respectively. This opposite preference influenced both the numbers and their relative abundances of D. dievengatensis and Monhystera sp, inside bacterial patches in experiments with a mixed 2-species nematode inoculum. Bacterial cell density strongly influenced the nematode response, with D. meyli invariably preferring the highest cell densities offered, while D. dievengatensis and Monhystera sp. had a peak response at lower cell densities. Though chemotaxis is suggested as an underlying mechanism, the nature of the nematodes' response remains unproved. The present results strongly support the importance of food patchiness in determining the heterogeneous distribution of nematodes, and extend the concept in such a way as to allow for small differences in microhabitat choice between closely related species. They also support the view that nematodes are specialist feeders, though they probably select spots where suitable food is plentiful rather than individual food particles. Finally, the present study offers a baseline for an understanding and further study of patterns of succession among nematode species associated with decaying Spartina anglica detritus in terms of highly specific relationships with different strains, growth stages, and densities of bacteria involved in the mineralization of Spartina anglica-derived organic matter
    corecore