1,198 research outputs found
Quantitative measurement of orbital angular momentum in electron microscopy
Electron vortex beams have been predicted to enable atomic scale magnetic
information measurement, via transfer of orbital angular momentum. Research so
far has focussed on developing production techniques and applications of these
beams. However, methods to measure the outgoing orbital angular momentum
distribution are also a crucial requirement towards this goal. Here, we use a
method to obtain the orbital angular momentum decomposition of an electron
beam, using a multi-pinhole interferometer. We demonstrate both its ability to
accurately measure orbital angular momentum distribution, and its experimental
limitations when used in a transmission electron microscope.Comment: 6 pages, 5 figure
Symmetry-constrained electron vortex propagation
Electron vortex beams hold great promise for development in transmission
electron microscopy, but have yet to be widely adopted. This is partly due to
the complex set of interactions that occur between a beam carrying orbital
angular momentum (OAM) and a sample. Herein, the system is simplified to focus
on the interaction between geometrical symmetries, OAM and topology. We present
multiple simulations, alongside experimental data to study the behaviour of a
variety of electron vortex beams after interacting with apertures of different
symmetries, and investigate the effect on their OAM and vortex structure, both
in the far-field and under free-space propagation.Comment: 11 page
Exploiting lens aberrations to create electron vortex beams
A model for a new electron vortex beam production method is proposed and
experimentally demonstrated. The technique calls on the controlled manipulation
of the degrees of freedom of the lens aberrations to achieve a helical phase
front. These degrees of freedom are accessible by using the corrector lenses of
a transmission electron microscope. The vortex beam is produced through a
particular alignment of these lenses into a specifically designed astigmatic
state and applying an annular aperture in the condensor plane. Experimental
results are found to be in good agreement with simulations.Comment: 5 pages, 4 figure
Sub-nanometer free electrons with topological charge
The holographic mask technique is used to create freely moving electrons with
quantized angular momentum. With electron optical elements they can be focused
to vortices with diameters below the nanometer range. The understanding of
these vortex beams is important for many applications. Here we present a theory
of focused free electron vortices. The agreement with experimental data is
excellent. As an immediate application, fundamental experimental parameters
like spherical aberration and partial coherence are determined.Comment: 4 pages, 5 figure
Electronically coupled complementary interfaces between perovskite band insulators
Perovskite oxides exhibit a plethora of exceptional electronic properties,
providing the basis for novel concepts of oxide-electronic devices. The
interest in these materials is even extended by the remarkable characteristics
of their interfaces. Studies on single epitaxial connections between the two
wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either
high-mobility electron conductors or insulating, depending on the atomic
stacking sequences. In the latter case they are conceivably positively charged.
For device applications, as well as for basic understanding of the interface
conduction mechanism, it is important to investigate the electronic coupling of
closely-spaced complementary interfaces. Here we report the successful
realization of such electronically coupled complementary interfaces in SrTiO3 -
LaAlO3 thin film multilayer structures, in which the atomic stacking sequence
at the interfaces was confirmed by quantitative transmission electron
microscopy. We found a critical separation distance of 6 perovskite unit cell
layers, corresponding to approximately 2.3 nm, below which a decrease of the
interface conductivity and carrier density occurs. Interestingly, the high
carrier mobilities characterizing the separate electron doped interfaces are
found to be maintained in coupled structures down to sub-nanometer interface
spacing
Theory and applications of free-electron vortex states
Both classical and quantum waves can form vortices: with helical phase fronts
and azimuthal current densities. These features determine the intrinsic orbital
angular momentum carried by localized vortex states. In the past 25 years,
optical vortex beams have become an inherent part of modern optics, with many
remarkable achievements and applications. In the past decade, it has been
realized and demonstrated that such vortex beams or wavepackets can also appear
in free electron waves, in particular, in electron microscopy. Interest in
free-electron vortex states quickly spread over different areas of physics:
from basic aspects of quantum mechanics, via applications for fine probing of
matter (including individual atoms), to high-energy particle collision and
radiation processes. Here we provide a comprehensive review of theoretical and
experimental studies in this emerging field of research. We describe the main
properties of electron vortex states, experimental achievements and possible
applications within transmission electron microscopy, as well as the possible
role of vortex electrons in relativistic and high-energy processes. We aim to
provide a balanced description including a pedagogical introduction, solid
theoretical basis, and a wide range of practical details. Special attention is
paid to translate theoretical insights into suggestions for future experiments,
in electron microscopy and beyond, in any situation where free electrons occur.Comment: 87 pages, 34 figure
Terrestrial Laser Scanning to Detect Liana Impact on Forest Structure
Tropical forests are currently experiencing large-scale structural changes, including an increase in liana abundance and biomass. Higher liana abundance results in reduced tree growth and increased tree mortality, possibly playing an important role in the global carbon cycle. Despite the large amount of data currently available on lianas, there are not many quantitative studies on the influence of lianas on the vertical structure of the forest. We study the potential of terrestrial laser scanning (TLS) in detecting and quantifying changes in forest structure after liana cutting using a small scale removal experiment in two plots (removal plot and non-manipulated control plot) in a secondary forest in Panama. We assess the structural changes by comparing the vertical plant profiles and Canopy Height Models (CHMs) between pre-cut and post-cut scans in the removal plot. We show that TLS is able to detect the local structural changes in all the vertical strata of the plot caused by liana removal. Our study demonstrates the reproducibility of the TLS derived metrics for the same location confirming the applicability of TLS for continuous monitoring of liana removal plots to study the long-term impacts of lianas on forest structure. We therefore recommend to use TLS when implementing new large scale liana removal experiments, as the impact of lianas on forest structure will determine the aboveground competition for light between trees and lianas, which has important implications for the global carbon cycle
Selective attraction of marine bacterivorous nematodes to their bacterial food
This paper explores the role of selective attraction to food in determining the spatial (micro)distribution of closely related nematode species. The attractiveness of 3 different bacterial strains to 4 species of Monhysteridae, Diplolaimelloides meyli, Diplolaimella dievengatensis, Monhystera sp. and Geomonhystera disjuncta, was studied in a multiple choice design. In our study area, the 4 nematode species considered are associated with Spartina anglica detritus decay and have partially overlapping microhabitat preferences. As they all belong to the same feeding guild, they are potential competitors for food. Each of the 4 nematode species was attracted to the bacterial strain B1, but important interspecific differences were noted in the nematodes' response to live or heat-killed bacteria, to bacteria at different tell densities or of different age, and to the filtered supernatant of B1 culture. While the responses of D. meyli to the Gram-positive bacteria Halobacillus trueperi and to the Gramnegative Escherichia coli were similar, D. dievengatensis and Monhystera sp, were preferentially attracted to H. trueperi and E. coli, respectively. This opposite preference influenced both the numbers and their relative abundances of D. dievengatensis and Monhystera sp, inside bacterial patches in experiments with a mixed 2-species nematode inoculum. Bacterial cell density strongly influenced the nematode response, with D. meyli invariably preferring the highest cell densities offered, while D. dievengatensis and Monhystera sp. had a peak response at lower cell densities. Though chemotaxis is suggested as an underlying mechanism, the nature of the nematodes' response remains unproved. The present results strongly support the importance of food patchiness in determining the heterogeneous distribution of nematodes, and extend the concept in such a way as to allow for small differences in microhabitat choice between closely related species. They also support the view that nematodes are specialist feeders, though they probably select spots where suitable food is plentiful rather than individual food particles. Finally, the present study offers a baseline for an understanding and further study of patterns of succession among nematode species associated with decaying Spartina anglica detritus in terms of highly specific relationships with different strains, growth stages, and densities of bacteria involved in the mineralization of Spartina anglica-derived organic matter
- …
