267 research outputs found
Bio-inspired Materials : Antioxidant and Phosphotriesterase Nanozymes
Bio-inspired or biomimetic chemistry deals with the replication of the nature’s fundamental processes, which can help in understanding the functioning of biological systems and develop novel applications. Although a large number of researchers worked towards the replication of natural synthetic pathways through biogenetic syntheses, enzyme mimicry by the small organic molecules and inorganic complexes emerged in leaps and bounds over the years. The development of biomimetic chemistry then continued in designing the molecules that can function like enzymes. And now, with the advent of nanotechnology, nanostructured materials have been shown to exhibit enzyme-like activities (nanozymes). Interestingly, the two distinct fields, biology and materials science, have been integrated to form an entirely new area of research that has captured a great attention. Along with the pronounced application of nanomaterials as drug delivery vehicles, anticancer agents, antimicrobials, etc., research is also focused on designing nanomaterials for the biomimetic applications.
The thesis consists of five chapters. The first chapter provides a general overview of the recently discovered nanozymes that mimic heme-peroxidase, oxidase, superoxide dismutase, catalase, haloperoxidase and phosphatase. This chapter also deals with the nanozymes’ application in sensing and immunoassay, and as antioxidants, neuroprotective agents. The factors affecting the nanozymes’ activity and the challenges associated with them is also covered in this chapter. Chapter 2 is divided into two parts and it deals with the biomimetic properties of graphene-based materials. In part A, the remarkable peroxynitrite (PN) reductase and isomerase activities of hemin-functionalized reduced graphene oxide (rGO) is discussed. In part B, the activity of graphene oxide (GO) as peroxide substrate for the glutathione peroxidase (GPx) enzyme is discussed. In chapter 3, the oxidant material, V2O5, is shown to exhibit significant GPx-like antioxidant activity in its nano-form. Chapter 4 deals with the oxidase-like activity of MnFe2O4 nanooctahedrons for the antibody-free detection of major oxidative stress biomarker, carbonylated proteins. In chapter 5, the phosphotriesterase mimetic role of vacancy engineered nanoceria is discussed. instead of H2O2 for glutathione peroxidase (GPx) enzyme. As partial reduction of GO was observed when treated with GPx enzyme due to the fact that large sheet-like structures cannot be accessible to the active site, we studied the reaction with some GPx mimetics (Fig. 2). Varying the concentration of cofactor glutathione (GSH) required for the reaction, GPx mimic, ditelluride, could accomplish the reduction of GO following Michaelis-Menten kinetics. As the structure of GO is elusive and under active investigation, our study highlights the presence of peroxide linkages as integral part of GO other than hydroxyl, epoxy and carboxylic groups. This study also highlights an important fact that the modification of GO by biologically relevant compounds such as redox proteins must be taken into account when using GO for biomedical applications because such modifications can alter the fundamental properties of GO.
Figure 2. The GO reductase and decarboxylase activities of GPx mimetic ditelluride compound, suggesting the presence of peroxide linkages on GO.
In chapter 3, we have discussed about the novel antioxidant nanozyme that combats oxidative stress. During our attempts in the investigation of antioxidant nanozymes, we surprisingly noticed that the oxidant material, V2O5, shows significant GPx-like antioxidant activity in its nano-form. The Vn readily internalize in the cells and exhibit remarkable protective effects when challenged against reactive oxygen species (ROS). Although Vn has been shown to protect cells from ROS-induced damage, cells treated with bulk V2O5 and few vanadium complexes resulted in generation of ROS and severe toxicity. Detailed investigation on the mechanism of this interesting phenomenon
Chapter 4 deals with the development of novel methodology for detection of biomarkers. Inspired by the use of antibodies and enzymes for detection of a specific antigen, we have shown for the first time that the nanozymes can entirely replace antibodies and enzymes in Enzyme-linked Immunosorbent Assays (ELISA). As a specific example, we focused on the antibody-free detection of chief oxidative stress biomarker, carbonylated proteins, as our target. To achieve this, we designed MnFe2O4 nanooctahedrons that can function as oxidase enzyme and form signaling point of detection. We functionalized MnFe2O4 nanooctahedrons with hydrazide terminating groups so that carbonylated proteins can be linked to nanozymes by hydrazone linkage (Fig. 4a). Treatment of various carbonylated proteins (hemoglobin (Hb), Myoglobin (Mb), Cytochrome c (Cyt c), RNase and BSA) coated in well plate with hydrazide-terminated MnFe2O4 nanooctahedrons and then with 3,3’,5,5’-tetramethylbenzidine substrate, resulted in instantaneous detection by well plate reader (Fig. 4b). Considering the challenges and difficulties associated with the conventional methods used to detect such modified proteins, this methodology opens up a new avenue for the simple, cost-effective, instantaneous and entirely antibody-free ELISA-type detection of carbonylated proteins. Our results provide a cumulative application of nanozymes’ technology in oxidative stress associated areas and pave a new way for direct early detection of post translational modification (PTM) related diseases.
Figure 4. a) Nanozyme linked to the carbonylated protein coated on a plate through hydrazone linkage. b) General bar diagram showing detection of oxidized (carbonylated) proteins by nanozymes.
Synopsis
Figure 5. a) A cartoon view of surface of ceria showing vacancy. b) Zoomed portion of high resolution transmission electron microscopic image showing few vacancies on the surface of nanoceria. c) Catalytic mechanism of detoxification of paraoxon at the defect site.
In the final chapter, chapter 5, we have discussed about the nanomaterial that can function as phosphotriesterase enzyme. Phosphotriesterase enzyme is a bacterial enzyme that is involved in the rapid hydrolysis of sarin gas-related deadly nerve agents such as paraoxon, parathion and malathion. When encountered with these orgnaophospatetriesters, living beings tend to undergo nerve shock to cause paralysis by inhibiting an extremely important enzyme called acetylcholine esterase. They are also known to cause severe oxidative stress problems and are associated with neurodegenerative disorders. Therefore, curbing the toxic effects and detoxification of these nerve agents is a world-wide concern and many research teams have focused their attention to address this important problem. Working on the development of nanozymes for important problems, we found that nanoceria, especially the vacancy engineered one (Fig. 5a,b), can serve as active mimic of phosphotriesterase enzyme in the presence of N-methylmorpholine (acting as a distal base histidine). Vacancy engineered nanoceria has been shown to catalyze the hydrolysis of high amounts of paraoxon quiet efficiently and within few minutes with very low activation energy and high kcat. Detailed mechanistic investigation revealed that the presence of both Ce(III) and Ce(IV) is very essential for detoxification activity (Fig. 5b). The vacancies on the surface of nanoceria, were the buried Ce(III) ions are directly exposed to the reaction environment, behave as hotspots or enzyme active sites for detoxification reaction (Fig. 5b)
Recommended from our members
BoBBLE: ocean-atmosphere interaction and its impact on the South Asian monsoon
The Bay of Bengal (BoB) plays a fundamental role in controlling the weather systems that make up the South Asian summer monsoon system. In particular,the southern BoB has cooler sea surface temperature (SST) that influence ocean-atmosphere interaction and impact on the monsoon. Compared to the southeast, the southwestern BoB is cooler, more saline, receives much less rain, and is influenced by the Summer Monsoon Current(SMC). To examine the impact of these features on the monsoon, the BoB Boundary Layer Experiment (BoBBLE) was jointly undertaken by India and the UK during June–July 2016. Physical and bio-geochemical observations were made using a CTD, five ocean gliders, a uCTD, a VMP, two ADCPs, Argo floats, drifting buoys, meteorological sensors and upper air radiosonde balloons. The observations were made along a zonal section at 8◦N between 85.3◦E and 89◦E with a 10-day time series at 89◦E, 8◦N. This paper presents the new observed features of the southern BoB from the BoBBLE field program, supported by satellite data. Key results from the BoBBLE field campaign show the Sri Lanka Dome and the SMC in different stages of their seasonal evolution and two freshening events during which salinity decreased in the upper layer leading to the formation of thick barrier layers. BoBBLE observations were taken during a suppressed phase of the intraseasonal oscillation; they captured in detail the warming of the ocean mixed layer and preconditioning of the atmosphere to convection
Duration of third stage labour and postpartum blood loss: a secondary analysis of the WHO CHAMPION trial data
Background: Obstetric haemorrhage continues to be a leading cause of maternal mortality, contributing to more than a quarter of the 2,443,000 maternal deaths reported between 2003 and 2009. During this period, about 70% of the haemorrhagic deaths occurred postpartum. In addition to other identifiable risk factors for greater postpartum blood loss, the duration of the third stage of labour (TSL) seems to be important, as literature shows that a longer TSL can be associated with more blood loss. To better describe the association between the duration of TSL and postpartum blood loss in women receiving active management of third stage of labour (AMTSL), this secondary analysis of the WHO CHAMPION trial data has been conducted. Methods: This was a secondary analysis of the WHO CHAMPION trial conducted in twenty-three sites in ten countries. We studied the association between the TSL duration and blood loss in the sub cohort of women from the CHAMPION trial (all of whom received AMTSL), with TSL upto 60 min and no interventions for postpartum haemorrhage. We used a general linear model to fit blood loss as a function of TSL duration on the log scale, arm and center, using a normal distribution and the log link function. We showed this association separately for oxytocin and for Heat stable (HS) carbetocin. Results: For the 10,040 women analysed, blood loss rose steeply with third stage duration in the first 10 min, but more slowly after 10 min. This trend was observed for both Oxytocin and HS carbetocin and the difference in the trends for both drugs was not statistically significant (p-value = 0.2070). Conclusions: There was a positive association between postpartum blood loss and TSL duration with either uterotonic. Blood loss rose steeply with TSL duration until 10 min, and more slowly after 10 min.Fil: Chikkamath, Sumangala B.. S. Nijalingappa Medical College; IndiaFil: Katageri, Geetanjali M.. S. Nijalingappa Medical College; IndiaFil: Mallapur, Ashalata A.. S. Nijalingappa Medical College; IndiaFil: Vernekar, Sunil S.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Somannavar, Manjunath S.. Jawaharlal Nehru Medical College Belgaum; IndiaFil: Piaggio, Gilda. No especifíca;Fil: Carroli, Guillermo. Centro Rosarino de Estudios Perinatales; ArgentinaFil: de Carvalho, José Ferreira. No especifíca;Fil: Althabe, Fernando. Organizacion Mundial de la Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Hofmeyr, G. Justus. University of Botswana; Estados Unidos. University of the Witwatersrand; SudáfricaFil: Widmer, Mariana. Organizacion Mundial de la Salud; ArgentinaFil: Gulmezoglu, Ahmet Metin. No especifíca;Fil: Goudar, Shivaprasad S.. Jawaharlal Nehru Medical College Belgaum; Indi
The microbial Trojan Horse and antimicrobial resistance:Acanthamoeba as an environmental reservoir for multidrug resistant bacteria
Antimicrobial resistance (AMR) is shaped by environmental pressures, yet the role of microbial predators such as Acanthamoeba in resistance dynamics remains poorly characterized. In this study, Acanthamoeba-associated bacterial communities (AAB) exhibited significantly higher multidrug resistance than sediment-associated bacterial communities (SAB) in a polluted estuarine system. All isolated amoebae belonged to the T4 genotype, suggesting selection for resilient host organisms. AAB displayed elevated multiple antibiotic resistance (MAR) indices and increased resistance to multiple antibiotic classes, particularly aminoglycosides, macrolides, fluoroquinolones and β-lactams. Correlation analysis revealed that resistance in AAB, but not SAB, was associated with potentially toxic elements (PTEs) known to influence phagocyte survival, including arsenic, vanadium, and calcium. These elements may select for traits that confer metal and antibiotic resistance. The findings support a model where protists act as selective environments for AMR, favoring bacteria that possess enhanced tolerance mechanisms. This work provides the first direct evidence linking PTE exposure to the intracellular resistome of Acanthamoeba-associated bacteria. It underscores the need for AMR monitoring frameworks that include protist-bacteria interactions, with implications for One Health and environmental risk assessment strategies. Moreover, this approach is scalable for application in low/middle-income countries, where AMR burden is greatest and surveillance capacity remains limited
Deterministic Lateral Displacement:Challenges and Perspectives
The advent of microfluidics in the 1990s promised a revolution in multiple industries from healthcare to chemical processing. Deterministic lateral displacement (DLD) is a continuous-flow microfluidic particle separation method discovered in 2004 that has been applied successfully and widely to the separation of blood cells, yeast, spores, bacteria, viruses, DNA, droplets, and more. Deterministic lateral displacement is conceptually simple and can deliver consistent performance over a wide range of flow rates and particle concentrations. Despite wide use and in-depth study, DLD has not yet been fully elucidated or optimized, with different approaches to the same problem yielding varying results. We endeavor here to provide up-to-date expert opinion on the state-of-art and current fundamental, practical, and commercial challenges with DLD as well as describe experimental and modeling opportunities. Because these challenges and opportunities arise from constraints on hydrodynamics, fabrication, and operation at the micro- and nanoscale, we expect this Perspective to serve as a guide for the broader micro- and nanofluidic community to identify and to address open questions in the field
On the development of baroclinic waves influenced by friction and heating
The influence of surface skin friction and a specific type of heating on the stability of baroclinic waves in a two-level, quasi-geostrophic model is investigated. It is found that the effect of friction alone changes the neutral stability curve in such a way that a broader band of wavelengths are unstable for a given value of the vertical windshear. The neutral stability curve is independent of the intensity of friction in this case. The effect of heating is to make all waves longer than a certain critical wave length unstable, but the amplification rate is very small for large values of the wavelength. The combined effect of friction and heating will in general tend to stabilize the waves. The amplification rate is investigated in all cases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43246/1/24_2004_Article_BF00874891.pd
Usability, acceptability, and feasibility of the World Health Organization Labour Care Guide: A mixed-methods, multicountry evaluation.
Introduction
The World Health Organization’s (WHO) Labour Care Guide (LCG) is a “next-generation” partograph based on WHO’s latest intrapartum care recommendations. It aims to optimize clinical care provided to women and their experience of care. We evaluated the LCG’s usability, feasibility, and acceptability among maternity care practitioners in clinical settings.
Methods
Mixed-methods evaluation with doctors, midwives, and nurses in 12 health facilities across Argentina, India, Kenya, Malawi, Nigeria, and Tanzania. Purposively sampled and trained practitioners applied the LCG in low-risk women during labor and rated experiences, satisfaction, and usability. Practitioners were invited to focus group discussions (FGDs) to share experiences and perceptions of the LCG, which were subjected to framework analysis.
Results
One hundred and thirty-six practitioners applied the LCG in managing labor and birth of 1,226 low-risk women. The majority of women had a spontaneous vaginal birth (91.6%); two cases of intrapartum stillbirths (1.63 per 1000 births) occurred. Practitioner satisfaction with the LCG was high, and median usability score was 67.5%. Practitioners described the LCG as supporting precise and meticulous monitoring during labor, encouraging critical thinking in labor management, and improving the provision of woman-centered care.
Conclusions
The LCG is feasible and acceptable to use across different clinical settings and can promote woman-centered care, though some design improvements would benefit usability. Implementing the LCG needs to be accompanied by training and supportive supervision, and strategies to promote an enabling environment (including updated policies on supportive care interventions, and ensuring essential equipment is available)
Antenatal dexamethasone for early preterm birth in low-resource countries
BACKGROUND: The safety and efficacy of antenatal glucocorticoids in women in low-resource countries who are at risk for preterm birth are uncertain. METHODS: We conducted a multicountry, randomized trial involving pregnant women between 26 weeks 0 days and 33 weeks 6 days of gestation who were at risk for preterm birth. The participants were assigned to intramuscular dexamethasone or identical placebo. The primary outcomes were neonatal death alone, stillbirth or neonatal death, and possible maternal bacterial infection; neonatal death alone and stillbirth or neonatal death were evaluated with superiority analyses, and possible maternal bacterial infection was evaluated with a noninferiority analysis with the use of a prespecified margin of 1.25 on the relative scale. RESULTS: A total of 2852 women (and their 3070 fetuses) from 29 secondary- and tertiary-level hospitals across Bangladesh, India, Kenya, Nigeria, and Pakistan underwent randomization. The trial was stopped for benefit at the second interim analysis. Neonatal death occurred in 278 of 1417 infants (19.6%) in the dexamethasone group and in 331 of 1406 infants (23.5%) in the placebo group (relative risk, 0.84; 95% confidence interval [CI], 0.72 to 0.97; P=0.03). Stillbirth or neonatal death occurred in 393 of 1532 fetuses and infants (25.7%) and in 444 of 1519 fetuses and infants (29.2%), respectively (relative risk, 0.88; 95% CI, 0.78 to 0.99; P=0.04); the incidence of possible maternal bacterial infection was 4.8% and 6.3%, respectively (relative risk, 0.76; 95% CI, 0.56 to 1.03). There was no significant between-group difference in the incidence of adverse events. CONCLUSIONS: Among women in low-resource countries who were at risk for early preterm birth, the use of dexamethasone resulted in significantly lower risks of neonatal death alone and stillbirth or neonatal death than the use of placebo, without an increase in the incidence of possible maternal bacterial infection.Fil: Oladapo, Olufemi T.. Organizacion Mundial de la Salud; ArgentinaFil: Vogel, Joshua P.. Organizacion Mundial de la Salud; ArgentinaFil: Piaggio, Gilda. Organizacion Mundial de la Salud; ArgentinaFil: Nguyen, My-Huong. Organizacion Mundial de la Salud; ArgentinaFil: Althabe, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Metin Gülmezoglu, A.. Organizacion Mundial de la Salud; ArgentinaFil: Bahl, Rajiv. Organizacion Mundial de la Salud; ArgentinaFil: Rao, Suman P.N.. Organizacion Mundial de la Salud; ArgentinaFil: de Costa, Ayesha. Organizacion Mundial de la Salud; ArgentinaFil: Gupta, Shuchita. Organizacion Mundial de la Salud; ArgentinaFil: Shahidullah, Mohammod. No especifíca;Fil: Chowdhury, Saleha B.. No especifíca;Fil: Ara, Gulshan. No especifíca;Fil: Akter, Shaheen. No especifíca;Fil: Akhter, Nasreen. No especifíca;Fil: Dey, Probhat R.. No especifíca;Fil: Abdus Sabur, M.. No especifíca;Fil: Azad, Mohammad T.. No especifíca;Fil: Choudhury, Shahana F.. No especifíca;Fil: Matin, M.A.. No especifíca;Fil: Goudar, Shivaprasad S.. No especifíca;Fil: Dhaded, Sangappa M.. No especifíca;Fil: Metgud, Mrityunjay C.. No especifíca;Fil: Pujar, Yeshita V.. No especifíca;Fil: Somannavar, Manjunath S.. No especifíca;Fil: Vernekar, Sunil S.. No especifíca;Fil: Herekar, Veena R.. No especifíca;Fil: Bidri, Shailaja R.. No especifíca;Fil: Mathapati, Sangamesh S.. No especifíca;Fil: Patil, Preeti G.. No especifíca;Fil: Patil, Mallanagouda M.. No especifíca;Fil: Gudadinni, Muttappa R.. No especifíca;Fil: Bijapure, Hidaytullah R.. No especifíca;Fil: Mallapur, Ashalata A.. No especifíca;Fil: Katageri, Geetanjali M.. No especifíca;Fil: Chikkamath, Sumangala B.. No especifíca;Fil: Yelamali, Bhuvaneshwari C.. No especifíca;Fil: Pol, Ramesh R.. No especifíca;Fil: Misra, Sujata S.. No especifíca;Fil: Das, Leena. No especifíca
The microbial Trojan Horse and antimicrobial resistance : Acanthamoeba as an environmental reservoir for multidrug resistant bacteria
Antimicrobial resistance (AMR) is shaped by environmental pressures, yet the role of microbial predators such as Acanthamoeba in resistance dynamics remains poorly characterised. In this study, Acanthamoeba-associated bacterial communities (AAB) exhibited significantly higher multidrug resistance than sediment-associated bacterial communities (SAB) in a polluted estuarine system. All isolated amoebae belonged to the T4 genotype, suggesting selection for resilient host organisms. AAB displayed elevated multiple antibiotic resistance (MAR) indices and increased resistance to multiple antibiotic classes, particularly aminoglycosides, macrolides, fluoroquinolones, and β-lactams. Correlation analysis revealed that resistance in AAB, but not SAB, was associated with potentially toxic elements (PTEs) known to influence phagocyte survival, including arsenic, vanadium, and calcium. These elements may select for intracellular traits that confer metal and antibiotic resistance. The findings support a model whereby protists act not only as reservoirs but as selective environments for AMR, favouring bacteria that possess enhanced tolerance mechanisms. This work provides the first direct evidence linking PTE exposure to the intracellular resistome of Acanthamoeba-associated bacteria. It underscores the need for AMR monitoring frameworks that include protist-bacteria interactions, with implications for One Health and environmental risk assessment strategies. Moreover, this approach is scalable for application in low/middle-income countries, where AMR burden is greatest and genomic surveillance capacity remains limited
- …
