1,425 research outputs found

    On the sound of snapping shrimp

    Get PDF
    Snapping shrimp produce a snapping sound by an extremely rapid closure of their snapper claw. Source levels reported for Alpheus heterochaelis are as high as 220 dB (peak-to-peak) re. 1 µPa at 1 m distance. The loud snap has been attributed to the mechanical contact made when the snapper claw contracts. The recent ultra-high-speed imaging of the snapper claw closure at 40500 frames per second has revealed that the sound is, in fact, generated by the collapse of a cavitation bubble formed in a fast flowing water jet forced out from between the claws during claw closure. A temporal analysis of the sound recordings and the high-speed images shows that no sound is associated with the claw closure, while a very prominent signal is observed during the collapse of the cavitation bubble. Gallery of Fluid Motion\ud Award-winning entry 200

    Breakup of diminutive Rayleigh jets

    Get PDF
    Discharging a liquid from a nozzle at sufficient large velocity leads to a continuous jet that due to capillary forces breaks up into droplets. Here we investigate the formation of microdroplets from the breakup of micron-sized jets with ultra high-speed imaging. The diminutive size of the jet implies a fast breakup time scale τc=ρr3/γ\tau_\mathrm{c} = \sqrt{\rho r^3 / \gamma} of the order of 100\,ns{}, and requires imaging at 14 million frames per second. We directly compare these experiments with a numerical lubrication approximation model that incorporates inertia, surface tension, and viscosity [Eggers and Dupont, J. Fluid Mech. 262, 205 (1994); Shi, Brenner, and Nagel, Science 265, 219 (1994)]. The lubrication model allows to efficiently explore the parameter space to investigate the effect of jet velocity and liquid viscosity on the formation of satellite droplets. In the phase diagram we identify regions where the formation of satellite droplets is suppressed. We compare the shape of the droplet at pinch-off between the lubrication approximation model and a boundary integral (BI) calculation, showing deviations at the final moment of the pinch-off. Inspite of this discrepancy, the results on pinch-off times and droplet and satellite droplet velocity obtained from the lubrication approximation agree with the high-speed imaging results

    Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions

    Get PDF
    published_or_final_versio

    Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target

    Get PDF
    The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is studied for a pulse length range from 500 fs to 4.5 ps and a fluence range spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing a high-numerical-aperture optical microscope, while the ion yield and energy distributions are obtained from a set of Faraday cups set up under various angles. We found a slight increase of the ion yield for an increasing pulse length, while the ablation depth is slightly decreasing. The ablation volume remained constant as a function of pulse length. The ablation depth follows a two-region logarithmic dependence on the fluence, in agreement with the available literature and theory. In the examined fluence range, the ion yield angular distribution is sharply peaked along the target normal at low fluences but rapidly broadens with increasing fluence. The total ionization fraction increases monotonically with fluence to a 5-6% maximum, which is substantially lower than the typical ionization fractions obtained with nanosecond-pulse ablation. The angular distribution of the ions does not depend on the laser pulse length within the measurement uncertainty. These results are of particular interest for the possible utilization of fs-ps laser systems in plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure

    Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations

    Get PDF
    High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends

    Cleaning lateral morphological features of the root canal:the role of streaming and cavitation

    Get PDF
    AIM: To investigate the effects of ultrasonic activation file type, lateral canal location and irrigant on the removal of a biofilm-mimicking hydrogel from a fabricated lateral canal. Additionally, the amount of cavitation and streaming was quantified for these parameters. METHODOLOGY: An intracanal sonochemical dosimetry method was used to quantify the cavitation generated by an IrriSafe 25 mm length, size 25 file inside a root canal model filled with filtered degassed/saturated water or three different concentrations of NaOCl. Removal of a hydrogel, demonstrated previously to be an appropriate biofilm mimic, was recorded to measure the lateral canal cleaning rate from two different instruments (IrriSafe 25 mm length, size 25 and K 21 mm length, size 15) activated with a P5 Suprasson (Satelec) at power P8.5 in degassed/saturated water or NaOCl. Removal rates were compared for significant differences using nonparametric Kruskal-Wallis and/or Mann-Whitney U-tests. Streaming was measured using high-speed particle imaging velocimetry at 250 kfps, analysing both the oscillatory and steady flow inside the lateral canals. RESULTS: There was no significant difference in amount of cavitation between tap water and oversaturated water (P = 0.538), although more cavitation was observed than in degassed water. The highest cavitation signal was generated with NaOCl solutions (1.0%, 4.5%, 9.0%) (P < 0.007) and increased with concentration (P < 0.014). The IrriSafe file outperformed significantly the K-file in removing hydrogel (P < 0.05). Up to 64% of the total hydrogel volume was removed after 20 s. The IrriSafe file typically outperformed the K-file in generating streaming. The oscillatory velocities were higher inside the lateral canal 3 mm compared to 6 mm from WL and were higher for NaOCl than for saturated water, which in turn was higher than for degassed water. CONCLUSIONS: Measurements of cavitation and acoustic streaming have provided insight into their contribution to cleaning. Significant differences in cleaning, cavitation and streaming were found depending on the file type and size, lateral canal location and irrigant used. In general, the IrriSafe file outperformed the K-file, and NaOCl performed better than the other irrigants tested. The cavitation and streaming measurements revealed that both contributed to hydrogel removal and both play a significant role in root canal cleaning

    L1CAM expression in uterine carcinosarcoma is limited to the epithelial component and may be involved in epithelial–mesenchymal transition

    Get PDF
    Uterine carcinosarcoma (UCS) has been proposed as a model for epithelial–mesenchymal transition (EMT), a process characterized by a functional change facilitating migration and metastasis in many types of cancer. L1CAMis an adhesion molecule that has been involved in EMT as a marker for mesenchymal phenotype.We examined expression of L1CAM in UCS in a cohort of 90 cases from four different centers. Slides were immunohistochemically stained for L1CAMand scored in four categories (0%, 50%). A score of more than 10% was considered positive for L1CAM. The median age at presentation was 68.6 years, and half of the patients (53.3%) presented with FIGO stage 1 disease. Membranous L1CAM expression was positive in the epithelial component in 65.4% of cases. Remarkably, expression was negative in the mesenchymal component. In cases where both components were intermingled, expression limited to the epithelial component was confirmed by a double stain for L1CAMand keratin. Expression of L1CAMdid not relate to overall or disease-free survival. Our findings suggest L1CAMis either not a marker for the mesenchymal phenotype in EMT, or UCS is not a good model for EMT

    Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification

    Get PDF
    Acoustic behavior of lipid-coated microbubbles has been widely studied, which has led to several numerical microbubble dynamics models that incorporate lipid coating behavior, such as buckling and rupture. In this study we investigated the relationship between micro-bubble acoustic and lipid coating behavior on a nanosecond scale by using fluorescently labeled lipids. It is hypothesized that a local increased concentration of lipids, appearing as a focal area of increased fluorescence intensity (hot spot) in the fluorescence image, is related to buckling and folding of the lipid layer thereby highly influencing the microbubble acoustic behavior. To test this hypothesis, the lipid microbubble coating was fluorescently labeled. The vibration of the microbubble (n= 177; 2.3-10.3 μm in diameter) upon insonification at an ultrasound frequency of 0.5 or 1 MHz at 25 or 50 kPa acoustic pressure was recorded with the UPMC Cam, an ultra-high-speed fluorescence camera, operated at ∼4-5 million frames per second. During short tone-burst excitation, hot spots on the microbubble coating occurred at relative vibration amplitudes > 0.3 irrespective of frequency and acoustic pressure. Around resonance, the majority of the microbubbles formed hot spots. When the microbubble also deflated acoustically, hot spot formation was likely irreversible. Although compression-only behavior (defined as substantially more microbubble compression than expansion) and subharmonic responses were observed in those microbubbles that formed hot spots, both phenomena were also found in microbubbles that did not form hot spots during insonification. In conclusion, this study reveals hot spot formation of the lipid monolayer in the microbubble's compression phase. However, our experimental results show that there is no direct relationship between hot spot formation of the lipid coating and microbubble acoustic behaviors such as compression-only and the generation of a subharmonic response. Hence, our hypothesis that hot spots are related to acoustic buckling could not be verified

    Implementing electronic health records in hospitals:a systematic literature review

    Get PDF
    Background: The literature on implementing Electronic Health Records (EHR) in hospitals is very diverse. The objective of this study is to create an overview of the existing literature on EHR implementation in hospitals and to identify generally applicable findings and lessons for implementers. Methods: A systematic literature review of empirical research on EHR implementation was conducted. Databases used included Web of Knowledge, EBSCO, and Cochrane Library. Relevant references in the selected articles were also analyzed. Search terms included Electronic Health Record (and synonyms), implementation, and hospital (and synonyms). Articles had to meet the following requirements: (1) written in English, (2) full text available online, (3) based on primary empirical data, (4) focused on hospital-wide EHR implementation, and (5) satisfying established quality criteria. Results: Of the 364 initially identified articles, this study analyzes the 21 articles that met the requirements. From these articles, 19 interventions were identified that are generally applicable and these were placed in a framework consisting of the following three interacting dimensions: (1) EHR context, (2) EHR content, and (3) EHR implementation process. Conclusions: Although EHR systems are anticipated as having positive effects on the performance of hospitals, their implementation is a complex undertaking. This systematic review reveals reasons for this complexity and presents a framework of 19 interventions that can help overcome typical problems in EHR implementation. This framework can function as a reference for implementers in developing effective EHR implementation strategies for hospitals
    corecore