36 research outputs found
Granite magmatism and mantle filiation
Current granite magma generation models essentially reduce to two groups: (1) intra-crustal melting and (2) basaltic origin. A mixed, crustal, and basaltic origin and therefore a mantle filiation has been proposed for most granite magma types. In contrast, strongly peraluminous silicic magmas such as two-mica leucogranites have been classically interpreted as products of pure crustal melting. In this paper, we re-examine this interpretation and the evidence for considering leucogranites as unique among granite types. In the first part, some key aspects of the intra-crustal melting model are reviewed. Classical assumptions are discussed, such as the use of migmatites to infer granite generation processes. Our knowledge of crustal melt production is still incomplete, and fluid-present H2O-undersaturated melting should be considered in addition to mica dehydration melting reactions. The source rock remains essential as a concept despite difficulties in the identification of source lithologies from their geochemical and mineralogical signatures. Incorporating spatial and temporal variability at the source and the possibility of external inputs (fluids, magmas) would represent useful evolutions of the model. Thermal considerations bring strong constraints on the intra-crustal melting model since the absence of mafic magmas reduces possible external heat sources for melting. In the second part, the origin of a strongly peraluminous silicic volcanic suite, the Macusani Volcanics (SE Peru), is detailed. Magmas were generated in a mid-crustal anatectic zone characterized by high temperatures and heat fluxes. Crustal metamorphic rocks (metapelites) were dominant in the source region, although Ba-, Sr- and La-rich calcic plagioclase cores and some biotite and sanidine compositions point to the involvement of a mantle component. The heat necessary for melting was supplied by mafic mainly potassic-ultrapotassic magmas which also partly mixed and hybridized with the crustal melts. The Macusani Volcanics provide an example of a crustal peraluminous silicic suite generated with a contribution from the mantle in the form of mafic magmas intruded in the source region. This, as well as the limitations of the intra-crustal melting model, establishes that a mantle filiation is possible for peraluminous leucogranites as for most other crustal (S-, I- and A-type) peraluminous and metaluminous granites. This stresses the critical importance of the mantle for granite generation and opens the way for unification of granite generation processes
Data for: Mica-liquid trace elements partitioning and the granite-pegmatite connection: The St-Sylvestre complex (Western French Massif Central)
Major and trace element compositions of micas from the granite of the St Sylvestre Leucogranite complex, (Limousin, Fance) and from the pegmatite of the Mont d'Ambazac pegmatite field that are intrusive in the St Sylvestre leucogranite complex
Mica-liquid trace elements partitioning and the granite-pegmatite connection: The St-Sylvestre complex (Western French Massif Central)
Data for: Mica-liquid trace elements partitioning and the granite-pegmatite connection: The St-Sylvestre complex (Western French Massif Central)
Major and trace element compositions of micas from the granite of the St Sylvestre Leucogranite complex, (Limousin, Fance) and from the pegmatite of the Mont d'Ambazac pegmatite field that are intrusive in the St Sylvestre leucogranite complex.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
Isotopic variations in S-type granites: An inheritance from a heterogeneous source?
Inherited zircons from S-type granites provide exceptionally good insight into the isotopic heterogeneity of their sources. Zircons from four samples (one granite, two granodiorites, one granodioritic enclave) of Pan-African S-type granite of the Cape Granite Suite (c. 540 Ma) have been the subject of a laser LA-ICP-MS zircon U/Pb study to determine emplacement ages and inheritance. Zircons from three of these samples (2 granodiorites and 1 granodioritic enclave) were also analysed for Hf isotopes by LA-MC-ICP-MS. Ages of inherited cores range from 1,200 to 570 Ma and show Hafnium isotope values (ε
Hf,t) for the crystallisation age (t) of the different cores that range from -14.1 to +9.1. Magmatic zircons and magmatic overgrowth with concordant spot ages between ca. 525 and ca. 555 Ma show a similar range of ε
Hf,t, between -8.6 and +1.5, whilst ε
Hf values calculated at 540Ma (ε
Hf,540) for inherited cores range from -15.2 to +1.7. Thus, our results show that the time evolved ε
Hf arrays of the inherited cores overlap closely with the ε
Hf range displayed by the magmatic rims at the time of crystallisation of the pluton. These similarities imply a genetic relationship between magmatic and inherited zircons. Within the inherited cores, four main peak ages can be identified. This, coupled with their large Hf isotopic range, emphasises that the source of the granite is highly heterogeneous. The combination of the U/Pb zircon ages ranges and Hf isotope data implies that: (1) The source of S-type granite consists of crustal material recording several regional events between 1,200 and 600 Ma. This material records the recycling of a much older crust derived from depleted mantle between 1. 14 and 2.02 Ga. (2) The homogenisation of Hf isotopic variation in the magma acquired through dissolution of the entrained zircon, via mechanical mixing and/or diffusion between within the granite was particularly inefficient. (3) This evidence argues for the assembly of the pluton through many relatively small magma batches that undergo rapid cooling from their intrusion temperature (ca. 850°C) to background magma chamber temperature that is low enough to ensure that much of the magmatic zircon crystallised rapidly (>80% by 700°C). (4) There is no evidence for the addition of mantle-derived material in the genesis of S-type Cape Granite Suite, where the most mafic granodiorites are strongly peraluminous, relatively low in CaO and K
2O rich. Interpreted more widely, these findings imply that S-type granites inherit their isotopic characteristic from the source. Source heterogeneity transfers to the granite magma via the genesis of discrete magma batches. The information documented from the S-type CGS zircons has been recorded because the individual batches of magma crystallised the bulk of their magmatic zircon prior to mechanical or diffusional magma homogenisation. This is favoured by zirconium saturation in the magma shortly after emplacement, by partial dissolution of the entrained zircon fraction, as well as by the intrusion of volumetrically subordinate magma batches into a relatively cool pluton. Consequently, evidence recorded within inherited cores will most likely be best preserved in S-type granite plutons intruded at shallow depths. Other studies that have documented similar ε
Hf arrays in magmatic zircons have interpreted these to reflect mixing between crustal- and mantle-derived magmas. This study indicates that such arrays may be wholly source inherited, reflecting mixing of a range of crustal materials of different ages and original isotopic signatures. © 2011 Springer-Verlag
Granite magmatism and mantle filiation
<jats:p>Abstract. Current granite magma generation models essentially reduce to two groups: (1) intra-crustal melting and (2) basaltic origin. A mixed, crustal, and basaltic origin and therefore a mantle filiation has been proposed for most granite magma types. In contrast, strongly peraluminous silicic magmas such as two-mica leucogranites have been classically interpreted as products of pure crustal melting. In this paper, we re-examine this interpretation and the evidence for considering leucogranites as unique among granite types. In the first part, some key aspects of the intra-crustal melting model are reviewed. Classical assumptions are discussed, such as the use of migmatites to infer granite generation processes. Our knowledge of crustal melt production is still incomplete, and fluid-present H2O-undersaturated melting should be considered in addition to mica dehydration melting reactions. The source rock remains essential as a concept despite difficulties in the identification of source lithologies from their geochemical and mineralogical signatures. Incorporating spatial and temporal variability at the source and the possibility of external inputs (fluids, magmas) would represent useful evolutions of the model. Thermal considerations bring strong constraints on the intra-crustal melting model since the absence of mafic magmas reduces possible external heat sources for melting. In the second part, the origin of a strongly peraluminous silicic volcanic suite, the Macusani Volcanics (SE Peru), is detailed. Magmas were generated in a mid-crustal anatectic zone characterized by high temperatures and heat fluxes. Crustal metamorphic rocks (metapelites) were dominant in the source region, although Ba-, Sr- and La-rich calcic plagioclase cores and some biotite and sanidine compositions point to the involvement of a mantle component. The heat necessary for melting was supplied by mafic mainly potassic–ultrapotassic magmas which also partly mixed and hybridized with the crustal melts. The Macusani Volcanics provide an example of a crustal peraluminous silicic suite generated with a contribution from the mantle in the form of mafic magmas intruded in the source region. This, as well as the limitations of the intra-crustal melting model, establishes that a mantle filiation is possible for peraluminous leucogranites as for most other crustal (S-, I- and A-type) peraluminous and metaluminous granites. This stresses the critical importance of the mantle for granite generation and opens the way for unification of granite generation processes.
</jats:p>
Diagnostic en ultrabiomicroscopie d’une effusion uvéale bilatérale après réalisation d’une panphotocoagulation rétinienne ab externo
Relationships between deformation and magmatism in the Pan-African Kandi Shear Zone: Microstructural and AMS studies of Ediacaran granitoid intrusions in central Bénin (West Africa)
International audienceRelationships between the metamorphic basement, granitic intrusions and the Kandi Shear Zone (KSZ) in central Bénin have been investigated using petrological and structural approaches, in order to better understand the space and time parameters of the Pan-African shear deformation and the Ediacaran magmatism. In central Bénin, metamorphic rocks from the KSZ display a steep to vertical N–S trending foliation, a sub-horizontal mineral lineation together with kinematic indicators in agreement with a dextral transcurrent mega-shear zone. Four granitic intrusions (Dassa, Tré, Gobada and Tchetti) show many petrological similarities. They are biotite ± amphibole – ilmenite ± magnetite monzogranites with ferrous and metaluminous I-type features derived from high-K calk-alkaline magma. A fifth intrusion (Fita) is an alkali-feldspar, biotite, magnetite and ilmenite bearing granite crystallized from an alkaline magma. Moreover, high K2O, Zr, Y, Nb and low CaO, MgO and Al2O3 contents together with high (FeOt/MgO) and low LIL/HFS elements ratios suggesting an A-type granite affinity.Microstructural and AMS investigations presented in this paper show (i) solid-state deformation evidence for Dassa pluton and (ii) a magmatic deformation for the Tré, Tchetti, Gobada and Fita granitoids. Foliation in Dassa is parallel to the mesoscopic planar mylonitic foliation of the metamorphic basement. In the Tré, Tchetti, Gobada and Fita granitoids, magmatic textures and magnetic fabrics are coherent with the KSZ activity. These data suggest (i) a syn-kinematic nature for most of the intrusions (Tré, Gobada, Tchetti and Fita), except Dassa which correspond to an earlier event (ii) the succession of high-K calk-alkaline (Dassa, Tré, Gobada, Tchetti) evolves toward alkaline magmas (Fita) during the KSZ strike-slip tectonics. These observations highlight the changing nature of magma composition, magmatic processes and the different sources during KSZ activity in the Bénin Nigerian Shield. These new results suggest that the previous geodynamic interpretations, which assume a post-tectonic emplacement for the Gobada intrusion or an active continental margin setting for most of the late Pan-African (Ediacaran) granites intruded in central Bénin, has to be re-examined
