3,672 research outputs found

    The Quasi-Elastic Nuclear Response

    Full text link
    We explore the nuclear responses at intermediate energies, particularly in the spin longitudinal and spin transverse isovector channels, within the continuum random phase approximation framework. We also employ an extension of the standard random phase approximation to account for the spreading width of the single particle states through the inclusion of a complex and energy-dependent nucleon self-energy. The nuclear responses are then used as the basic ingredient to calculate hadronic reactions in the Glauber theory framework. Here both one and two-step contributions to the multiple scattering series in the quasi-elastic peak region are taken into account. We find evidence for shell effects in the one-step response and a strong dependence on the momentum regime of the two-step contribution.Comment: 26 pages, REVTEX 2.1, 9 figures (Postscript, available from the Authors

    Breakup of three particles within the adiabatic expansion method

    Get PDF
    General expressions for the breakup cross sections in the lab frame for 1+21+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S{\cal S}-matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+21+2 processes, there are nevertheless particular configurations in the breakup channel (for example those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations

    Coulomb effects in nucleon-deuteron polarization-transfer coefficients

    Get PDF
    Coulomb effects in the neutron-deuteron and proton-deuteron polarization-transfer coefficients KyyK_y^{y'}, KzxK_z^{x'}, KyxxyyK_y^{x'x'-y'y'} and KyzzK_y^{z'z'} are studied at energies above the deuteron breakup threshold. Theoretical predictions for these observables are evaluated in the framework of the Kohn Variational Principle using correlated basis functions to expand the three-nucleon scattering wave function. The two-nucleon Argonne v18v_{18} and the three-nucleon Urbana IX potentials are considered. In the proton-deuteron case, the Coulomb interaction between the two protons is included explicitly and the results are compared to the experimental data available at Elab=10,19,22.7E_{lab}=10,19,22.7 MeV. In the neutron-deuteron case, a comparison to a recent measurement of KyyK_y^{y'} by Hempen {\sl et al.} at Elab=19E_{lab}=19 MeV evidences a contribution of the calculated Coulomb effects opposite to those extracted from the experiment.Comment: 7 pages, 3 figure

    The harmonic hyperspherical basis for identical particles without permutational symmetry

    Full text link
    The hyperspherical harmonic basis is used to describe bound states in an AA--body system. The approach presented here is based on the representation of the potential energy in terms of hyperspherical harmonic functions. Using this representation, the matrix elements between the basis elements are simple, and the potential energy is presented in a compact form, well suited for numerical implementation. The basis is neither symmetrized nor antisymmetrized, as required in the case of identical particles; however, after the diagonalization of the Hamiltonian matrix, the eigenvectors reflect the symmetries present in it, and the identification of the physical states is possible, as it will be shown in specific cases. We have in mind applications to atomic, molecular, and nuclear few-body systems in which symmetry breaking terms are present in the Hamiltonian; their inclusion is straightforward in the present method. As an example we solve the case of three and four particles interacting through a short-range central interaction and Coulomb potential

    Subleading contributions to the three-nucleon contact interaction

    Get PDF
    We obtain a minimal form of the two-derivative three-nucleon contact Lagrangian, by imposing all constraints deriving from discrete symmetries, Fierz identities and Poincare' covariance. The resulting interaction, depending on 13 unknown low-energy constants, leads to a three-nucleon potential which we give in a local form in configuration space. We also consider the leading (no-derivative) four-nucleon interaction and show that there exists only one independent operator.Comment: 11 pages. Three more operators found after correcting some mistaken Fierz relation

    Effect of three-nucleon interaction in p-3He elastic scattering

    Get PDF
    We present a detailed study of the effect of different three-nucleon interaction models in p-3He elastic scattering at low energies. In particular, two models have been considered: one derived from effective field theory at next-to-next-to-leading order and one derived from a more phenomenological point of view -- the so-called Illinois model. The four-nucleon scattering observables are calculated using the Kohn variational principle and the hyperspherical harmonics technique and the results are compared with available experimental data. We have found that the inclusion of either one of the other force model improves the agreement with the experimental data, in particular for the proton vector analyzing power.Comment: 4 pages, 3 figure

    Chiral effective field theory predictions for muon capture on deuteron and 3He

    Full text link
    The muon-capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c_D and c_E, present in the three-nucleon potential and (c_D) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and 3He are predicted to be 399(3) sec^{-1} and 1494 (21) sec^{-1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on 3He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.Comment: 4 pages, 2 figures, revisited version accepted for publication on Phys. Rev. Let
    corecore