3,672 research outputs found
The Quasi-Elastic Nuclear Response
We explore the nuclear responses at intermediate energies, particularly in
the spin longitudinal and spin transverse isovector channels, within the
continuum random phase approximation framework. We also employ an extension of
the standard random phase approximation to account for the spreading width of
the single particle states through the inclusion of a complex and
energy-dependent nucleon self-energy. The nuclear responses are then used as
the basic ingredient to calculate hadronic reactions in the Glauber theory
framework. Here both one and two-step contributions to the multiple scattering
series in the quasi-elastic peak region are taken into account. We find
evidence for shell effects in the one-step response and a strong dependence on
the momentum regime of the two-step contribution.Comment: 26 pages, REVTEX 2.1, 9 figures (Postscript, available from the
Authors
Breakup of three particles within the adiabatic expansion method
General expressions for the breakup cross sections in the lab frame for
reactions are given in terms of the hyperspherical adiabatic basis. The
three-body wave function is expanded in this basis and the corresponding
hyperradial functions are obtained by solving a set of second order
differential equations. The -matrix is computed by using two recently
derived integral relations. Even though the method is shown to be well suited
to describe processes, there are nevertheless particular configurations
in the breakup channel (for example those in which two particles move away
close to each other in a relative zero-energy state) that need a huge number of
basis states. This pathology manifests itself in the extremely slow convergence
of the breakup amplitude in terms of the hyperspherical harmonic basis used to
construct the adiabatic channels. To overcome this difficulty the breakup
amplitude is extracted from an integral relation as well. For the sake of
illustration, we consider neutron-deuteron scattering. The results are compared
to the available benchmark calculations
Coulomb effects in nucleon-deuteron polarization-transfer coefficients
Coulomb effects in the neutron-deuteron and proton-deuteron
polarization-transfer coefficients , ,
and are studied at energies above the deuteron breakup threshold.
Theoretical predictions for these observables are evaluated in the framework of
the Kohn Variational Principle using correlated basis functions to expand the
three-nucleon scattering wave function. The two-nucleon Argonne and
the three-nucleon Urbana IX potentials are considered. In the proton-deuteron
case, the Coulomb interaction between the two protons is included explicitly
and the results are compared to the experimental data available at
MeV. In the neutron-deuteron case, a comparison to a
recent measurement of by Hempen {\sl et al.} at MeV
evidences a contribution of the calculated Coulomb effects opposite to those
extracted from the experiment.Comment: 7 pages, 3 figure
The harmonic hyperspherical basis for identical particles without permutational symmetry
The hyperspherical harmonic basis is used to describe bound states in an
--body system. The approach presented here is based on the representation of
the potential energy in terms of hyperspherical harmonic functions. Using this
representation, the matrix elements between the basis elements are simple, and
the potential energy is presented in a compact form, well suited for numerical
implementation. The basis is neither symmetrized nor antisymmetrized, as
required in the case of identical particles; however, after the diagonalization
of the Hamiltonian matrix, the eigenvectors reflect the symmetries present in
it, and the identification of the physical states is possible, as it will be
shown in specific cases. We have in mind applications to atomic, molecular, and
nuclear few-body systems in which symmetry breaking terms are present in the
Hamiltonian; their inclusion is straightforward in the present method. As an
example we solve the case of three and four particles interacting through a
short-range central interaction and Coulomb potential
Subleading contributions to the three-nucleon contact interaction
We obtain a minimal form of the two-derivative three-nucleon contact
Lagrangian, by imposing all constraints deriving from discrete symmetries,
Fierz identities and Poincare' covariance. The resulting interaction, depending
on 13 unknown low-energy constants, leads to a three-nucleon potential which we
give in a local form in configuration space. We also consider the leading
(no-derivative) four-nucleon interaction and show that there exists only one
independent operator.Comment: 11 pages. Three more operators found after correcting some mistaken
Fierz relation
Effect of three-nucleon interaction in p-3He elastic scattering
We present a detailed study of the effect of different three-nucleon
interaction models in p-3He elastic scattering at low energies. In particular,
two models have been considered: one derived from effective field theory at
next-to-next-to-leading order and one derived from a more phenomenological
point of view -- the so-called Illinois model. The four-nucleon scattering
observables are calculated using the Kohn variational principle and the
hyperspherical harmonics technique and the results are compared with available
experimental data. We have found that the inclusion of either one of the other
force model improves the agreement with the experimental data, in particular
for the proton vector analyzing power.Comment: 4 pages, 3 figure
Chiral effective field theory predictions for muon capture on deuteron and 3He
The muon-capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are
studied with nuclear strong-interaction potentials and charge-changing weak
currents, derived in chiral effective field theory. The low-energy constants
(LEC's) c_D and c_E, present in the three-nucleon potential and (c_D)
axial-vector current, are constrained to reproduce the A=3 binding energies and
the triton Gamow-Teller matrix element. The vector weak current is related to
the isovector component of the electromagnetic current via the
conserved-vector-current constraint, and the two LEC's entering the contact
terms in the latter are constrained to reproduce the A=3 magnetic moments. The
muon capture rates on deuteron and 3He are predicted to be 399(3) sec^{-1} and
1494 (21) sec^{-1}, respectively, where the spread accounts for the cutoff
sensitivity as well as uncertainties in the LEC's and electroweak radiative
corrections. By comparing the calculated and precisely measured rates on 3He, a
value for the induced pseudoscalar form factor is obtained in good agreement
with the chiral perturbation theory prediction.Comment: 4 pages, 2 figures, revisited version accepted for publication on
Phys. Rev. Let
- …
