948 research outputs found
Non-homogeneous random walks, subdiffusive migration of cells and anomalous chemotaxis
This paper is concerned with a non-homogeneous in space and non-local in time
random walk model for anomalous subdiffusive transport of cells. Starting with
a Markov model involving a structured probability density function, we derive
the non-local in time master equation and fractional equation for the
probability of cell position. We show the structural instability of fractional
subdiffusive equation with respect to the partial variations of anomalous
exponent. We find the criteria under which the anomalous aggregation of cells
takes place in the semi-infinite domain.Comment: 18 pages, accepted for publicatio
On a Conjecture of Goriely for the Speed of Fronts of the Reaction--Diffusion Equation
In a recent paper Goriely considers the one--dimensional scalar
reaction--diffusion equation with a polynomial reaction
term and conjectures the existence of a relation between a global
resonance of the hamiltonian system and the asymptotic
speed of propagation of fronts of the reaction diffusion equation. Based on
this conjecture an explicit expression for the speed of the front is given. We
give a counterexample to this conjecture and conclude that additional
restrictions should be placed on the reaction terms for which it may hold.Comment: 9 pages Revtex plus 4 postcript figure
Propagation of a Solitary Fission Wave
Reaction-diffusion phenomena are encountered in an astonishing array of natural systems. Under the right conditions, self stabilizing reaction waves can arise that will propagate at constant velocity. Numerical studies have shown that fission waves of this type are also possible and that they exhibit soliton like properties. Here, we derive the conditions required for a solitary fission wave to propagate at constant velocity. The results place strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist, and this condition would apply to other reaction diffusion phenomena as well. Numerical simulations are used to confirm the results and show that solitary fission waves fall into a bistable class of reaction diffusion phenomena. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729927]United States Nuclear Regulatory Commission NRC-38-08-946Mechanical Engineerin
The role of platelets in blood coagulation during thrombus formation in flow
Hemostatic plug covering the injury site (or a thrombus in the pathological case) is formed due to the complex interaction of aggregating platelets with biochemical reactions in plasma that participate in blood coagulation. The mechanisms that control clot growth and which lead to growth arrest are not yet completely understood. We model them with numerical simulations based on a hybrid DPD-PDE model. Dissipative particle dynamics (DPD) is used to model plasma flow with platelets while fibrin concentration is described by a simplified reaction-diffusion-convection equation. The model takes into account consecutive stages of clot growth. First, a platelet is weakly connected to the clot and after some time this connection becomes stronger due to other surface receptors involved in platelet adhesion. At the same time, the fibrin network is formed inside the clot. This becomes possible because flow does not penetrate the clot and cannot wash out the reactants participating in blood coagulation. Platelets covered by the fibrin network cannot attach new platelets. Modelling shows that the growth of a hemostatic plug can stop as a result of its exterior part being removed by the flow thus exposing its non-adhesive core to the flow
Flame Enhancement and Quenching in Fluid Flows
We perform direct numerical simulations (DNS) of an advected scalar field
which diffuses and reacts according to a nonlinear reaction law. The objective
is to study how the bulk burning rate of the reaction is affected by an imposed
flow. In particular, we are interested in comparing the numerical results with
recently predicted analytical upper and lower bounds. We focus on reaction
enhancement and quenching phenomena for two classes of imposed model flows with
different geometries: periodic shear flow and cellular flow. We are primarily
interested in the fast advection regime. We find that the bulk burning rate v
in a shear flow satisfies v ~ a*U+b where U is the typical flow velocity and a
is a constant depending on the relationship between the oscillation length
scale of the flow and laminar front thickness. For cellular flow, we obtain v ~
U^{1/4}. We also study flame extinction (quenching) for an ignition-type
reaction law and compactly supported initial data for the scalar field. We find
that in a shear flow the flame of the size W can be typically quenched by a
flow with amplitude U ~ alpha*W. The constant alpha depends on the geometry of
the flow and tends to infinity if the flow profile has a plateau larger than a
critical size. In a cellular flow, we find that the advection strength required
for quenching is U ~ W^4 if the cell size is smaller than a critical value.Comment: 14 pages, 20 figures, revtex4, submitted to Combustion Theory and
Modellin
Preface. Bifurcations and Pattern Formation in Biological Applications
In the preface we present a short overview of articles included in the issue "Bifurcations and pattern formation in biological applications" of the journal Mathematical Modelling of Natural Phenomena
Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem
We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB)
equations, i.e. scalar conservation laws with diffusive-dispersive
regularization. We review the existence of traveling wave solutions for these
two classes of evolution equations. For classical equations the traveling wave
problem (TWP) for a local KdVB equation can be identified with the TWP for a
reaction-diffusion equation. In this article we study this relationship for
these two classes of evolution equations with nonlocal diffusion/dispersion.
This connection is especially useful, if the TW equation is not studied
directly, but the existence of a TWS is proven using one of the evolution
equations instead. Finally, we present three models from fluid dynamics and
discuss the TWP via its link to associated reaction-diffusion equations
Development of singularities for the compressible Euler equations with external force in several dimensions
We consider solutions to the Euler equations in the whole space from a
certain class, which can be characterized, in particular, by finiteness of
mass, total energy and momentum. We prove that for a large class of right-hand
sides, including the viscous term, such solutions, no matter how smooth
initially, develop a singularity within a finite time. We find a sufficient
condition for the singularity formation, "the best sufficient condition", in
the sense that one can explicitly construct a global in time smooth solution
for which this condition is not satisfied "arbitrary little". Also compactly
supported perturbation of nontrivial constant state is considered. We
generalize the known theorem by Sideris on initial data resulting in
singularities. Finally, we investigate the influence of frictional damping and
rotation on the singularity formation.Comment: 23 page
Dynamical extensions for shell-crossing singularities
We derive global weak solutions of Einstein's equations for spherically
symmetric dust-filled space-times which admit shell-crossing singularities. In
the marginally bound case, the solutions are weak solutions of a conservation
law. In the non-marginally bound case, the equations are solved in a
generalized sense involving metric functions of bounded variation. The
solutions are not unique to the future of the shell-crossing singularity, which
is replaced by a shock wave in the present treatment; the metric is bounded but
not continuous.Comment: 14 pages, 1 figur
- …
