1,008 research outputs found
Coronal Shock Waves, EUV waves, and their Relation to CMEs. II. Modeling MHD Shock Wave Propagation Along the Solar Surface, Using Nonlinear Geometrical Acoustics
We model the propagation of a coronal shock wave, using nonlinear geometrical
acoustics. The method is based on the Wentzel-Kramers-Brillouin (WKB) approach
and takes into account the main properties of nonlinear waves: i) dependence of
the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the
wave energy, and iii) progressive increase in the duration of solitary shock
waves. We address the method in detail and present results of the modeling of
the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as
Moreton waves along the solar surface in the simplest solar corona model. The
calculations reveal deceleration and lengthening of the waves. In contrast,
waves considered in the linear approximation keep their length unchanged and
slightly accelerate.Comment: 15 pages, 7 figures, accepted for publication in Solar Physic
Band gap engineering by Bi intercalation of graphene on Ir(111)
We report on the structural and electronic properties of a single bismuth
layer intercalated underneath a graphene layer grown on an Ir(111) single
crystal. Scanning tunneling microscopy (STM) reveals a hexagonal surface
structure and a dislocation network upon Bi intercalation, which we attribute
to a Bi structure on the underlying Ir(111)
surface. Ab-initio calculations show that this Bi structure is the most
energetically favorable, and also illustrate that STM measurements are most
sensitive to C atoms in close proximity to intercalated Bi atoms. Additionally,
Bi intercalation induces a band gap (eV) at the Dirac point of
graphene and an overall n-doping (eV), as seen in angular-resolved
photoemission spectroscopy. We attribute the emergence of the band gap to the
dislocation network which forms favorably along certain parts of the moir\'e
structure induced by the graphene/Ir(111) interface.Comment: 5 figure
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white
light a large-scale dome-shaped expanding coronal transient with perfectly
connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57)
concluded that the dome was formed by a weak shock wave. We have revealed two
EUV components, one of which corresponded to this transient. All of its
properties found from EUV, white light, and a metric type II burst match
expectations for a freely expanding coronal shock wave including correspondence
to the fast-mode speed distribution, while the transient sweeping over the
solar surface had a speed typical of EUV waves. The shock wave was presumably
excited by an abrupt filament eruption. Both a weak shock approximation and a
power-law fit match kinematics of the transient near the Sun. Moreover, the
power-law fit matches expansion of the CME leading edge up to 24 solar radii.
The second, quasi-stationary EUV component near the dimming was presumably
associated with a stretched CME structure; no indications of opening magnetic
fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
Analysis of a global Moreton wave observed on October 28, 2003
We study the well pronounced Moreton wave that occurred in as- sociation with
the X17.2 are/CME event of October 28, 2003. This Moreton wave is striking for
its global propagation and two separate wave centers, which implies that two
waves were launched simultane- ously. The mean velocity of the Moreton wave,
tracked within different sectors of propagation direction, lies in the range of
v ~ 900-1100 km/s with two sectors showing wave deceleration. The perturbation
profile analysis of the wave indicates amplitude growth followed by amplitude
weakening and broadening of the perturbation profile, which is con- sistent
with a disturbance first driven and then evolving into a freely propagating
wave. The EIT wavefront is found to lie on the same kinematical curve as the
Moreton wavefronts indicating that both are different signatures of the same
physical process. Bipolar coronal dim- mings are observed on the same opposite
East-West edges of the active region as the Moreton wave ignition centers. The
radio type II source, which is co-spatially located with the first wave front,
indicates that the wave was launched from an extended source region (& 60 Mm).
These findings suggest that the Moreton wave is initiated by the CME expanding
flanks.Comment: accepted to Ap
Looking at Vector Space and Language Models for IR using Density Matrices
In this work, we conduct a joint analysis of both Vector Space and Language
Models for IR using the mathematical framework of Quantum Theory. We shed light
on how both models allocate the space of density matrices. A density matrix is
shown to be a general representational tool capable of leveraging capabilities
of both VSM and LM representations thus paving the way for a new generation of
retrieval models. We analyze the possible implications suggested by our
findings.Comment: In Proceedings of Quantum Interaction 201
- …
