1,188 research outputs found

    Realistic theory of electronic correlations in nanoscopic systems

    Full text link
    Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund's J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.Comment: tutorial review submitted to EPJ-ST (scientific report of research unit FOR 1346); 14 figures, 26 page

    Double Counting in LDA+DMFT - The Example of NiO

    Get PDF
    An intrinsic issue of the LDA+DMFT approach is the so called double counting of interaction terms. How to choose the double-counting potential in a manner that is both physically sound and consistent is unknown. We have conducted an extensive study of the charge transfer system NiO in the LDA+DMFT framework using quantum Monte Carlo and exact diagonalization as impurity solvers. By explicitly treating the double-counting correction as an adjustable parameter we systematically investigated the effects of different choices for the double counting on the spectral function. Different methods for fixing the double counting can drive the result from Mott insulating to almost metallic. We propose a reasonable scheme for the determination of double-counting corrections for insulating systems.Comment: 7 pages, 6 figure

    Local impurity effects in superconducting graphene

    Full text link
    We study the effect of impurities in superconducting graphene and discuss their influence on the local electronic properties. In particular, we consider the case of magnetic and non-magnetic impurities being either strongly localized or acting as a potential averaged over one unit cell. The spin dependent local density of states is calculated and possibilities for visualizing impurities by means of scanning tunneling experiments is pointed out. A possibility of identifying magnetic scatters even by non spin-polarized scanning tunneling spectroscopy is explained.Comment: 4 pages, 4 figure

    Controlling the Kondo Effect in CoCu_n Clusters Atom by Atom

    Full text link
    Clusters containing a single magnetic impurity were investigated by scanning tunneling microscopy, spectroscopy, and ab initio electronic structure calculations. The Kondo temperature of a Co atom embedded in Cu clusters on Cu(111) exhibits a non-monotonic variation with the cluster size. Calculations model the experimental observations and demonstrate the importance of the local and anisotropic electronic structure for correlation effects in small clusters.Comment: 4 pages, 4 figure

    Nature of the Mott transition in Ca2RuO4

    Get PDF
    We study the origin of the temperature-induced Mott transition in Ca2RuO4. As a method we use the local-density approximation+dynamical mean-field theory. We show the following. (i) The Mott transition is driven by the change in structure from long to short c-axis layered perovskite (L-Pbca to S-Pbca); it occurs together with orbital order, which follows, rather than produces, the structural transition. (ii) In the metallic L-Pbca phase the orbital polarization is ~0. (iii) In the insulating S-Pbca phase the lower energy orbital, ~xy, is full. (iv) The spin-flip and pair-hopping Coulomb terms reduce the effective masses in the metallic phase. Our results indicate that a similar scenario applies to Ca_{2-x}Sr_xRuO_4 (x<0.2). In the metallic x< 0.5 structures electrons are progressively transferred to the xz/yz bands with increasing x, however we find no orbital-selective Mott transition down to ~300 K.Comment: 4 pages, 3 figures; published versio

    Dirac materials

    Full text link
    A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.Comment: Review article accepted in Adv. Phys. 77 page

    Probing of valley polarization in graphene via optical second-harmonic generation

    Get PDF
    Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure the valley polarization created, e.g., by polarized light and, thus, can be used for a development of ultrafast valleytronics in graphene.Comment: 5 pages, 3 figure

    Local Gating of an Ir(111) Surface Resonance by Graphene Islands

    Full text link
    The influence of graphene islands on the electronic structure of the Ir(111) surface is investigated. Scanning tunneling spectroscopy (STS) indicates the presence of a two-dimensional electron gas with a binding energy of -160meV and an effective mass of -0.18m_e underneath single-layer graphene on the Ir(111) surface. Density functional calculations reveal that the STS features are predominantly due to a holelike surface resonance of the Ir(111) substrate. Nanometer-sized graphene islands act as local gates, which shift and confine the surface resonance.Comment: Accepted by Physical Review Letters, Feb 17, 201
    corecore