6,659 research outputs found
Soliton Models for the Nucleon and Predictions for the Nucleon Spin Structure
In these lectures the three flavor soliton approach for baryons is reviewed.
Effects of flavor symmetry breaking in the baryon wave--functions on axial
current matrix elements are discussed. A bosonized chiral quark model is
considered to outline the computation of spin dependent nucleon structure
functions in the soliton picture.Comment: 12 pages, Lectures presented at the Advanced Study Institute Symmetry
and Spin, Prague, 2001, to appear in the proceedings. References correcte
Wave-Packet Scattering off the Kink-Solution
We investigate the propagation of a wave--packet in the model. We
solve the time-dependent equation of motion for two distinct initial
conditions: The wave-packet in a trivial vacuum background and in the
background of the kink soliton solution. We extract the scattering matrix from
the wave-packet in the kink background at very late times and compare it with
the result from static potential scattering in the small amplitude
approximation. We vary the size of the initial wave-packet to identify
non-linear effects as, for example, the replacement of the center of the kink.Comment: 15 pages, 7 figures (from 14 eps files), 4 tables, Int. J. Mod. Phys.
A, in prin
On the strange vector form factors of the nucleon in the NJL soliton model
Within the Nambu--Jona--Lasinio model strange degrees of freedom are
incorporated into the soliton picture using the collective approach of Yabu and
Ando. The form factors of the nucleon associated with the nonet vector current
are extracted. The numerical results provide limits for the strange magnetic
moment: . For the strange magnetic form factor of the
nucleon the valence quark and vacuum contributions add coherently while there
are significant cancellations for the strange electric form factor.Comment: 9 pages, one figure, postscript file submitted as uuencoded
compressed fil
Chiral Quark Model
In this talk I review studies of hadron properties in bosonized chiral quark
models for the quark flavor dynamics. Mesons are constructed from
Bethe--Salpeter equations and baryons emerge as chiral solitons. Such models
require regularization and I show that the two--fold Pauli--Villars
regularization scheme not only fully regularizes the effective action but also
leads the scaling laws for structure functions. For the nucleon structure
functions the present approach serves to determine the regularization
prescription for structure functions whose leading moments are not given by
matrix elements of local operators. Some numerical results are presented for
the spin structure functions.Comment: Talk presented at the workshop QCD 2002, IIT Kanpur, Nov. 2002, 10
pages, proceedings style files include
Fermion Energies in the Background of a Cosmic String
We provide a thorough exposition, including technical and numerical details,
of previously published results on the quantum stabilization of cosmic strings.
Stabilization occurs through the coupling to a heavy fermion doublet in a
reduced version of the standard model. We combine the vacuum polarization
energy of fermion zero-point fluctuations and the binding energy of occupied
energy levels, which are of the same order in a semi-classical expansion.
Populating these bound states assigns a charge to the string. We show that
strings carrying fermion charge become stable if the electro-weak bosons are
coupled to a fermion that is less than twice as heavy as the top quark. The
vacuum remains stable in our model, because neutral strings are not
energetically favored. These findings suggests that extraordinarily large
fermion masses or unrealistic couplings are not required to bind a cosmic
string in the standard model.Comment: 38 pages, 6 figures, version accepted for publication in Phys Rev
One-dimensional infinite component vector spin glass with long-range interactions
We investigate zero and finite temperature properties of the one-dimensional
spin-glass model for vector spins in the limit of an infinite number m of spin
components where the interactions decay with a power, \sigma, of the distance.
A diluted version of this model is also studied, but found to deviate
significantly from the fully connected model. At zero temperature, defect
energies are determined from the difference in ground-state energies between
systems with periodic and antiperiodic boundary conditions to determine the
dependence of the defect-energy exponent \theta on \sigma. A good fit to this
dependence is \theta =3/4-\sigma. This implies that the upper critical value of
\sigma is 3/4, corresponding to the lower critical dimension in the
d-dimensional short-range version of the model. For finite temperatures the
large m saddle-point equations are solved self-consistently which gives access
to the correlation function, the order parameter and the spin-glass
susceptibility. Special attention is paid to the different forms of finite-size
scaling effects below and above the lower critical value, \sigma =5/8, which
corresponds to the upper critical dimension 8 of the hypercubic short-range
model.Comment: 27 pages, 27 figures, 4 table
Nucleon Structure Functions from a Chiral Soliton in the Infinite Momentum Frame
We study the frame dependence of nucleon structure functions obtained within
a chiral soliton model for the nucleon. Employing light cone coordinates and
introducing collective coordinates together with their conjugate momenta,
translational invariance of the solitonic quark fields (which describe the
nucleon as a localized object) is restored. This formulation allows us to
perform a Lorentz boost to the infinite momentum frame of the nucleon. The
major result is that the Lorentz contraction associated with this boost causes
the leading twist contribution to the structure functions to properly vanish
when the Bjorken variable exceeds unity. Furthermore we demonstrate that
for structure functions calculated in the valence quark approximation to the
Nambu--Jona--Lasinio chiral soliton model the Lorentz contraction also has
significant effects on the structure functions for moderate values of the
Bjorken variable .Comment: 16 pages, 1 figure, revised version to be published in Int. J. Mod.
Phys.
Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model
In this paper the stability of the hedgehog shape of the chiral soliton is
studied for the octet baryon with the SU(3) chiral quark soliton model. The
strangeness degrees of freedom are treated by a simplified bound-state
approach, which omits the locality of the kaon wave function. The mean field
approximation for the flavor rotation is applied to the model. The classical
soliton changes shape according to the strangeness. The baryon appears as a
rotational band of the combined system of the deformed soliton and the kaon.Comment: 24 pages, LaTeX, 8 eps file
- …
