4,987 research outputs found
Turing's three philosophical lessons and the philosophy of information
In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work. This journal is © 2012 The Royal Society.Peer reviewe
A method to correct differential nonlinearities in subranging analog-to-digital converters used for digital gamma-ray spectroscopy
The influence on -ray spectra of differential nonlinearities (DNL) in
subranging, pipelined analog-to-digital converts (ADCs) used for digital
-ray spectroscopy was investigated. The influence of the DNL error on
the -ray spectra, depending on the input count-rate and the dynamic
range has been investigated systematically. It turned out, that the DNL becomes
more significant in -ray spectra with larger dynamic range of the
spectroscopy system. An event-by-event offline correction algorithm was
developed and tested extensively. This correction algorithm works especially
well for high dynamic ranges
Gating NO Release from Nitric Oxide Synthase
We have investigated the kinetics of NO escape from Geobacillus stearothermophilus nitric oxide synthase (gsNOS). Previous work indicated that NO release was gated at position 223 in mammalian enzymes; our kinetics experiments include mutants at that position along with measurements on the wild type enzyme. Employing stopped-flow UV–vis methods, reactions were triggered by mixing a reduced enzyme/N-hydroxy-l-arginine complex with an aerated buffer solution. NO release kinetics were obtained for wt NOS and three mutants (H134S, I223V, H134S/I223V). We have confirmed that wt gsNOS has the lowest NO release rate of known NOS enzymes, whether bacterial or mammalian. We also have found that steric clashes at positions 223 and 134 hinder NO escape, as judged by enhanced rates in the single mutants. The empirical rate of NO release from the gsNOS double mutant (H134/I223V) is nearly as rapid as that of the fastest mammalian enzymes, demonstrating that both positions 223 and 134 function as gates for escape of the product diatomic molecule
High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors
Current laser-interferometric gravitational wave detectors employ a self-homodyne
readout scheme where a comparatively large light power (5–50 mW) is detected per photosensitive
element. For best sensitivity to gravitational waves, signal levels as low as the quantum
shot noise have to be measured as accurately as possible. The electronic noise of the detection
circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light
are used to reduce the quantum noise. We present a new electronic circuit design reducing the
electronic noise of the photodetection circuit in the audio band. In the application of this circuit at
the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently
improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by
a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit
is about 5 µA/
√\ud
Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the
new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also
creates headroom for higher laser power and more squeezing to be observed in the future in
GEO 600 and is applicable to other optics experiments
Analysis of OPM potentials for multiplet states of 3d transition metal atoms
We apply the optimized effective potential method (OPM) to the multiplet
energies of the 3d transition metal atoms, where the orbital dependence of
the energy functional with respect to orbital wave function is the
single-configuration HF form. We find that the calculated OPM exchange
potential can be represented by the following two forms. Firstly, the
difference between OPM exchange potentials of the multiplet states can be
approximated by the linear combination of the potentials derived from the
Slater integrals and for the average
energy of the configuration. Secondly, the OPM exchange potential can be
expressed as the linear combination of the OPM exchange potentials of the
single determinants.Comment: 15 pages, 6 figures, to be published in J. Phys.
Atomic-scale representation and statistical learning of tensorial properties
This chapter discusses the importance of incorporating three-dimensional
symmetries in the context of statistical learning models geared towards the
interpolation of the tensorial properties of atomic-scale structures. We focus
on Gaussian process regression, and in particular on the construction of
structural representations, and the associated kernel functions, that are
endowed with the geometric covariance properties compatible with those of the
learning targets. We summarize the general formulation of such a
symmetry-adapted Gaussian process regression model, and how it can be
implemented based on a scheme that generalizes the popular smooth overlap of
atomic positions representation. We give examples of the performance of this
framework when learning the polarizability and the ground-state electron
density of a molecule
- …
