2,599 research outputs found
Cosmogenic-neutron activation of TeO2 and implications for neutrinoless double-beta decay experiments
Flux-averaged cross sections for cosmogenic-neutron activation of natural
tellurium were measured using a neutron beam containing neutrons of kinetic
energies up to 800 MeV, and having an energy spectrum similar to that of
cosmic-ray neutrons at sea-level. Analysis of the radioisotopes produced
reveals that 110mAg will be a dominant contributor to the cosmogenic-activation
background in experiments searching for neutrinoless double-beta decay of
130Te, such as CUORE and SNO+. An estimate of the cosmogenic-activation
background in the CUORE experiment has been obtained using the results of this
measurement and cross-section measurements of proton activation of tellurium.
Additionally, the measured cross sections in this work are also compared with
results from semi-empirical cross-section calculations.Comment: 11 pages, 5 figure
Differential cross section for neutron-proton bremsstrahlung
The neutron-proton bremsstrahlung process is known to be
sensitive to meson exchange currents in the nucleon-nucleon interaction. The
triply differential cross section for this reaction has been measured for the
first time at the Los Alamos Neutron Science Center, using an intense, pulsed
beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered
neutrons were observed at six angles between 12 and 32, and the
recoil protons were observed in coincidence at 12, 20, and
28 on the opposite side of the beam. Measurement of the neutron and
proton energies at known angles allows full kinematic reconstruction of each
event. The data are compared with predictions of two theoretical calculations,
based on relativistic soft-photon and non-relativistic potential models.Comment: 5 pages, 3 figure
Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents.
HIV latency in resting CD4+ T cell represents a key barrier preventing cure of the infection with antiretroviral drugs alone. Latency reversing agents (LRAs) can activate HIV expression in latently infected cells, potentially leading to their elimination through virus-mediated cytopathic effects, host immune responses, and/or therapeutic strategies targeting cells actively expressing virus. We have recently described several structurally simplified analogs of the PKC modulator LRA bryostatin (termed bryologs) designed to improve synthetic accessibility, tolerability in vivo, and efficacy in inducing HIV latency reversal. Here we report the comparative performance of lead bryologs, including their effects in reducing cell surface expression of HIV entry receptors, inducing proinflammatory cytokines, inhibiting short-term HIV replication, and synergizing with histone deacetylase inhibitors to reverse HIV latency. These data provide unique insights into structure-function relationships between A- and B-ring bryolog modifications and activities in primary cells, and suggest that bryologs represent promising leads for preclinical advancement
Combinations of isoform-targeted histone deacetylase inhibitors and bryostatin analogues display remarkable potency to activate latent HIV without global T-cell activation
AbstractCurrent antiretroviral therapy (ART) for HIV/AIDS slows disease progression by reducing viral loads and increasing CD4 counts. Yet ART is not curative due to the persistence of CD4+ T-cell proviral reservoirs that chronically resupply active virus. Elimination of these reservoirs through the administration of synergistic combinations of latency reversing agents (LRAs), such as histone deacetylase (HDAC) inhibitors and protein kinase C (PKC) modulators, provides a promising strategy to reduce if not eradicate the viral reservoir. Here, we demonstrate that largazole and its analogues are isoform-targeted histone deacetylase inhibitors and potent LRAs. Significantly, these isoform-targeted HDAC inhibitors synergize with PKC modulators, namely bryostatin-1 analogues (bryologs). Implementation of this unprecedented LRA combination induces HIV-1 reactivation to unparalleled levels and avoids global T-cell activation within resting CD4+ T-cells.</jats:p
Recommended from our members
Synthesis and evaluation of designed PKC modulators for enhanced cancer immunotherapy.
Bryostatin 1 is a marine natural product under investigation for HIV/AIDS eradication, the treatment of neurological disorders, and enhanced CAR T/NK cell immunotherapy. Despite its promising activity, bryostatin 1 is neither evolved nor optimized for the treatment of human disease. Here we report the design, synthesis, and biological evaluation of several close-in analogs of bryostatin 1. Using a function-oriented synthesis approach, we synthesize a series of bryostatin analogs designed to maintain affinity for bryostatin's target protein kinase C (PKC) while enabling exploration of their divergent biological functions. Our late-stage diversification strategy provides efficient access to a library of bryostatin analogs, which per our design retain affinity for PKC but exhibit variable PKC translocation kinetics. We further demonstrate that select analogs potently increase cell surface expression of CD22, a promising CAR T cell target for the treatment of leukemias, highlighting the clinical potential of bryostatin analogs for enhancing targeted immunotherapies
Highly efficient synthesis of the tricyclic core of Taxol by cascade metathesis
An efficient enantioselective synthesis of the ABC tricyclic core of the anticancer drug Taxol is reported. The key step of this synthesis is a cascade metathesis reaction, which leads in one operation to the required tricycle if appropriate fine-tuning of the dienyne precursor is performed
An invitation to grieve: reconsidering critical incident responses by support teams in the school setting
This paper proposes that consideration could be given to an invitational intervention rather than an expectational intervention when support personnel respond to a critical incident in schools. Intuitively many practitioners know that it is necessary for guidance/counselling personnel to intervene in schools in and following times of trauma. Most educational authorities in Australia have mandated the formulation of a critical incident intervention plan. This paper defines the term critical incident and then outlines current intervention processes, discussing the efficacy of debriefing interventions. Recent literature suggests that even though it is accepted that a planned intervention is necessary, there is scant evidence as to the effectiveness of debriefing interventions in stemming later symptoms of post traumatic stress disorder. The authors of this paper advocate for an expressive therapy intervention that is invitational rather than expectational, arguing that not all people respond to trauma in the same way and to expect that they will need to recall and retell what has happened is most likely a dangerous assumption. A model of invitation using Howard Gardner’s (1983) multiple intelligences is proposed so that students are invited to grieve and understand emotionally what is happening to them following a critical incident
- …
