612 research outputs found

    Level rearrangement in exotic atoms and quantum dots

    Get PDF
    A presentation and a generalisation are given of the phenomenon of level rearrangement, which occurs when an attractive long-range potential is supplemented by a short-range attractive potential of increasing strength. This problem has been discovered in condensate-matter physics and has also been studied in the physics of exotic atoms. A similar phenomenon occurs in a situation inspired by quantum dots, where a short-range interaction is added to an harmonic confinement.Comment: 12 pages, 11 figures, RevTeX

    Associated production of charged Higgs bosons and top quarks with POWHEG

    Get PDF
    The associated production of charged Higgs bosons and top quarks at hadron colliders is an important discovery channel to establish the existence of a non-minimal Higgs sector. Here, we present details of a next-to-leading order (NLO) calculation of this process using the Catani-Seymour dipole formalism and describe its implementation in POWHEG, which allows to match NLO calculations to parton showers. Numerical predictions are presented using the PYTHIA parton shower and are compared to those obtained previously at fixed order, to a leading order calculation matched to the PYTHIA parton shower, and to a different NLO calculation matched to the HERWIG parton shower with MC@NLO. We also present numerical predictions and theoretical uncertainties for various Two Higgs Doublet Models at the Tevatron and LHC.Comment: 36 page

    Automation of one-loop QCD corrections

    Get PDF
    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.Comment: 64 pages, 12 figures. Corrected the value of m_Z in table 1. In table 2, corrected the values of cross sections in a.4 and a.5 (previously computed with mu=mtop/2 rather than mu=mtop/4). In table 2, corrected the values of NLO cross sections in b.3, b.6, c.3, and e.7 (the symmetry factor for a few virtual channels was incorrect). In sect. A.4.3, the labeling of the four-momenta was incorrec

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV

    Get PDF
    Motivated by hints for a light Standard Model-like Higgs boson and a shift in experimental attention towards electroweak supersymmetry particle production at the CERN LHC, we update in this paper our precision predictions at next-to-leading order of perturbative QCD matched to resummation at the next-to-leading logarithmic accuracy for direct gaugino pair production in proton-proton collisions with a center-of-mass energy of 8 TeV. Tables of total cross sections are presented together with the corresponding scale and parton density uncertainties for benchmark points adopted recently by the experimental collaborations, and figures are presented for up-to-date model lines attached to them. Since the experimental analyses are currently obtained with parton showers matched to multi-parton matrix elements, we also analyze the precision of this procedure by comparing invariant-mass and transverse-momentum distributions obtained in this way to those obtained with threshold and transverse-momentum resummation.Comment: 28 pages, 7 figures, 9 tables; version to appear in JHE

    b-Initiated processes at the LHC: a reappraisal

    Full text link
    Several key processes at the LHC in the standard model and beyond that involve bb quarks, such as single-top, Higgs, and weak vector boson associated production, can be described in QCD either in a 4-flavor or 5-flavor scheme. In the former, bb quarks appear only in the final state and are typically considered massive. In 5-flavor schemes, calculations include bb quarks in the initial state, are simpler and allow the resummation of possibly large initial state logarithms of the type logQ2mb2\log \frac{{\cal Q}^2}{m_b^2} into the bb parton distribution function (PDF), Q{\cal Q} being the typical scale of the hard process. In this work we critically reconsider the rationale for using 5-flavor improved schemes at the LHC. Our motivation stems from the observation that the effects of initial state logs are rarely very large in hadron collisions: 4-flavor computations are pertubatively well behaved and a substantial agreement between predictions in the two schemes is found. We identify two distinct reasons that explain this behaviour, i.e., the resummation of the initial state logarithms into the bb-PDF is relevant only at large Bjorken xx and the possibly large ratios Q2/mb2{\cal Q}^2/m_b^2's are always accompanied by universal phase space suppression factors. Our study paves the way to using both schemes for the same process so to exploit their complementary advantages for different observables, such as employing a 5-flavor scheme to accurately predict the total cross section at NNLO and the corresponding 4-flavor computation at NLO for fully exclusive studies.Comment: Fixed typo in Eq. (A.10) and few typos in Eq. (C.2) and (C.3

    Interpreting an action from what we perceive and what we expect

    Get PDF
    International audienceIn update logic as studied by Baltag, Moss, Solecki and van Benthem, little attention is paid to the interpretation of an action by an agent, which is just assumed to depend on the situation. This is actually a complex issue that nevertheless complies to some logical dynamics. In this paper, we tackle this topic. We also deal with actions that change propositional facts of the situation. In parallel, we propose a formalism to accurately represent an agent's epistemic state based on hyperreal numbers. In that respect, we use infinitesimals to express what would surprise the agents (and by how much) by contradicting their beliefs. We also use a subjective probability to model the notion of belief. It turns out that our probabilistic update mechanism satisfies the AGM postulates of belief revision
    corecore